
An Investigation on the Applicability
of Inter-Disciplinary Concepts

to Software System Development

Christian Heller <christian.heller@tuxtax.de>
Ilka Philippow <ilka.philippow@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute of Technical Computer Science
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

Abstract. This article re-
ports about an effort trying
to improve software system
design by applying to it con-
cepts taken from other sci-
entific disciplines. The result-
ing programming theory dif-
fers from traditional ones. It
is based on firstly, a strict
distinction of statics and dy-
namics, secondly a knowledge
schema structuring models
and their meta information
hierarchically, and thirdly the
separation of state- and logic
knowledge. Many problems
existing in classical program-
ming paradigms and languages
are solved in this theory.
Keywords: Software Design,
Knowledge Schema, CYBOP,
Cybernetics, Programming

1 Introduction

Software Development as one field of
the science of Informatics has deliv-
ered many innovative concepts in its
meanwhile rather long history. While
some of them (like procedural-, but also
object-oriented programming) are al-
ready in use for decades, others (like

concerns, components or ontologies) are
still quite young and yet have to prove
their suitability for certain tasks of soft-
ware development, or yet have to get
accepted by the business world.

This article reports about the re-
sults of a five-year-long research work
within the area of software development,
in particular software design.

1.1 Software Crisis

An early question in software engineer-
ing was how to write programs that
control a computer system’s Hardware
correctly and efficiently. Over time, the
importance of hardware shifted in favour
of Software which nowadays contains
most of the logic needed to run an ap-
plication on a computer system. Conse-
quently, much more research emphasis
is now placed on the finding of clever
modelling concepts that help writing
correct and effective, stable and robust,
flexible and maintainable, secure soft-
ware. Another objective is to increase
the effectiveness and lessen the expen-
diture of cost and time in software de-
velopment projects, by reusing (pieces
of) software.



The past 40 years have delivered
numerous helpful concepts, for instance
Structure and Procedure, Class and In-
heritance, Pattern and Framework, Com-
ponent and Concern, and many more.
They undoubtedly have moved software
design far forward. Nevertheless, the dream
of true componentisation and full reusabil-
ity has not been reached. Czarnecki [10]
identifies problems in the four areas:
Reuse, Adaptability (Flexibility), man-
agement of Complexity and Performance.

Modern software is very complex. It
runs on different hardware platforms,
uses multiple communication paradigms
and offers various user interfaces. Many
tools and methods assist experts as well
as engineers in creating and maintain-
ing software but do they not seem suf-
ficient to cope with the complexity so
that often, systems still base on buggy
source code causing:

- False Results
- Memory Leaks
- Endless Loops
- Weak Performance
- Security Holes

Are these exclusively the fault of
software developers? Or, are the used
concepts perhaps insufficient? Using the
same, allegedly unsatisfying concepts caused
some people to talk about an ongoing
Software Crisis, sometimes Complexity
Crisis, affecting not only high-level ap-
plication programming, but also low-
level microchip design [11].

However, answers are not easy to
find. Software design is Arts and Engi-
neering, at the same time. Not every-
thing is or can be regulated by rules.
It is true, developers have to stick to
a set of design rules – and tools that
support their usage exist – but they
also have to be very creative. All the

time, they have to have new, innova-
tive ideas and apply them to software.
This is what makes the creation, inte-
gration, test and maintenance of soft-
ware so difficult. There is not really a
uniform way of treating it.

1.2 Motivation

To the issues that the work described
in this article had with some state-of-
the-art solutions belong three things:

1. Abstraction Gaps in Software En-
gineering Process (section 2.1)

2. Misleading Tiers in Physical Archi-
tecture (section 2.2)

3. Modelling Mistakes in Logical Ar-
chitecture (section 2.3)

The traversing of abstraction gaps
in a software engineering process be-
longs to the main difficulties in soft-
ware development, and causes consid-
erable cost- and time effort. It necessi-
tates a steady synchronisation between
domain experts and application system
developers, because their responsibil-
ities cannot be clearly separated and
interests often clash. A first objective
was therefore to contribute to closing
these gaps, especially the one existing
between a designed system architecture
and the implemented source code.

The misinterpretation of the phys-
ical tiers in an information technology
environment often leads to wrong-designed
software architectures. Logical layers are
adapted to physical tiers (frontend, busi-
ness logic and backend) and differing
patterns are used to implement them.
Instead, systems should be designed in
a way that allows the usage of a uni-
fied translator architecture, so to give
every application system the capability
to communicate universally by default,
which was the second objective.



Several well-known issues exist with
the modelling of logical system archi-
tectures, for example: fragile base class
problem, container inheritance, bidirec-
tional dependencies, global data access.
These and others more result from us-
ing wrong principles of knowledge ab-
straction, like the bundling of attributes
and methods in one class, as suggested
by Object Oriented Programming (OOP),
or the equalising of structural- and meta
information in a model. A third aim
was therefore to closer investigate the
basic principles and concepts after which
current software systems are created,
and to search for new concepts, with
the objective of finding a universal type
structure (knowledge schema).

1.3 Idea

On its search for new concepts, this
work intentionally tried to cross the bor-
ders to other scientific disciplines. The
idea behind is as simple as it is helpful:
Inspect solutions of various other disci-
plines of science, phenomenons of na-
ture, and apply them to software engi-
neering . . . in order to find out if weak-
nesses existing in traditional techniques
can be eliminated. Since results from
many different sciences were applied to
software engineering, the work can be
called an inter-disciplinary effort. Most
emphasis, however, was placed on the
comparison between human- and com-
puter systems, which is why this work
was given the name Cybernetics Ori-
ented Programming (CYBOP). Nature
has always been a good teacher and its
principles have often been copied; so
did this work.

Figure 1 shows some of the sciences
whose principles were considered in this
work. The name of a field of science is

Fig. 1. Mindmap of Influential Sciences

shown on top of each box. Made ob-
servations are mentioned below, in the
middle. The resulting design recommen-
dations for software can be found at
the bottom of each box. The recom-
mendations are grouped into those that
justify a separation of Statics and Dy-
namics (left-hand side), a new kind of
Knowledge Schema (lower part of the
figure) and a distinction between State
and Logic models (right-hand side).

It has to be mentioned though, that
only some of the principles underlying
a specific field of science were consid-
ered in the figure and in more detail
later in this article. The figure does by
no means claim to be complete. The
shown observations are only those that
seemed promising in the context of soft-
ware design. The existence of persis-
tent and transient data, for example,
is only one of many aspects of the sci-
ence of informatics. Similarly is the ex-
istence of sensoric and motoric nerve
system just one aspect of the field of
neurology. And so on. Further details
on the mentioned sciences and observa-
tions are not given here, since later sec-
tions will elaborate on some of them.



1.4 Method

The work described in this article was
undertaken in form of Constructive De-
velopment, as method of research. That
is, an application prototype Res Medic-
inae (section 4.3) for use in the medical
domain was developed in parallel to the
actual theoretical investigations.

Prototype development started off
by creating a state-of-the-art software
architecture using Object Oriented Pro-
gramming (OOP) principles and the Java
programming language. When the first
design problems occured, these were solved
by applying suitable software patterns
– mainly those of [14, 5, 13]. The steady
search for a flexible architecture with
only few dependencies then lead to the
restructuring of the application proto-
type, according to the recommendations
of Component Oriented Programming
(COP) with Concern Interfaces, as sug-
gested at that time by the Apache-Jakarta-
Avalon project [2].

Fig. 2. Merger of Concepts

However, these refactorings were only
some of at least two dozens, since also
COP and the application of concerns,
as well as other concepts applied later
(e.g. ontological structure implemented

using the means of OOP) turned out
to have their deficiencies. According to
the idea mentioned before, traditional
concepts were thus complemented, merged
or revised with new concepts stemming
from other scientific disciplines (figure
2), whenever a classical design solution
became unsatisfying.

Over the creation of a framework
called ResMedLib, which encapsulated
general application functionality, the pro-
totype development finally ended up in
a complete reengineering: most of the
functionality formerly residing in the
framework was moved into an interpreter
(section 4.2) written in the C program-
ming language; the actual application
knowledge, on the other hand, was put
into special files, for which an Exten-
sible Markup Language (XML)-based
language (section 4.1) was defined.

Since problems did not occur in a
predictable way, while developing the
mentioned prototype application, their
presentation in order of appearance would
be rather confusing. An adapted struc-
ture of sections is therefore used in this
article, which first describes a number
of observed discrepancies (section 2),
then reflects on the most essential new
concepts (section 3), before it later ex-
plains how these were implemented in
practice (section 4).

2 Existing Problems

The problems elaborated on following
belong to the software engineering pro-
cess (abstraction gaps), to the phys-
ical architecture (misleading tiers) as
well as to the logical architecture (mod-
elling mistakes) of systems.



2.1 Abstraction Gaps

Software has to be developed in a cre-
ative process called Software Engineer-
ing Process (SEP) or Methodology (fig-
ure 3).

Fig. 3. Abstraction Gaps

Different forms of SEP exist: Wa-
terfall, Iterative, Extreme Programming
(XP) and Agile Programming. But ev-
ery project, consciously or not, follows
a SEP that sooner-or-later, in one form
or the other, goes through three com-
mon phases: Analysis, Design and Im-
plementation. Each phase creates its own
model of what is to be abstracted in
software and it is the differences in ex-
actly these models that often cause com-
plications.

A previous article [16] mentioned
the Requirements Document, Feature Model,
Architecture Diagrams and Source Code
as forms of knowledge abstraction. It
also described the following abstraction
gaps (see figure 3) that have to be crossed:

1a Requirements Document/Feature M.
1b Feature Model/Architecture Diagr.
2 Architecture Diagrams/Source Code

By improving the Traceability be-
tween requirements and the architec-

ture, feature models (known from sys-
tem family/ product line engineering)
contribute to minimising gap 1. Together
with architecture diagrams, they ease
communication between stakeholders in
the SEP, because of their human-readable
form and implementation-independence.
But sooner-or-later, also these have to
be transferred into source code, by cross-
ing gap 2.

Bridging or closing these abstrac-
tion gaps (sometimes called Semantic-
or Conceptual Gaps) is also known as:
achieving higher intentionality and re-
mains an unsolved task for software en-
gineering. One aim of the work described
in this article was to contribute to a
possible solution, with focus on reduc-
ing gap 2, existing between a designed
architecture and the implemented code.

2.2 Misleading Tiers

When distinguishing human- and tech-
nical systems, the kinds of Communi-
cation are:

- Human ↔ Human
- Human ↔ Computer
- Computer ↔ Computer

Each of these relies on different tech-
niques, transport mechanisms, languages
(protocols) and so on. But the general
principle after which communication works,
is always the same – no matter whether
technical Computer systems or their bi-
ological prototype, the Human Being,
are considered: Information is received,
stored, processed and sent. Despite these
common characteristics, today’s Infor-
mation Technology (IT) environments
[18] treat communication between a com-
puter system and a human being differ-
ently than that among computer sys-
tems.



Fig. 4. Universal Communication

Figure 4 shows a three-tier environ-
ment: tier 1 represents the Presentation
Layer ; tier 2 stands for the Applica-
tion Layer ; tier 3 is the Database (DB)
Layer. Typical synonyms are, in this
order: Frontend, Business Logic and Back-
end. The tiers (layers) serve two needs:
connect different locations and share
work load (Scaling). However, the split
into tiers of that kind raises two illu-
sions:

1. Users only interact with clients
2. Persistent data are stored in DB

only

Many IT architectures, or at least
their illustrations, neglect the fact that
in reality all systems need a User In-
terface (UI), for at least being admin-
istered by humans, and almost all sys-
tems, even Database Management Sys-
tems (DBMS) themselves, store some
of their persistent data outside a database,
for example locally available configura-
tion information. This is not necessar-
ily a problem for the IT environment
as such, but it is for the internal archi-
tecture of software systems. Special so-
lutions have to deal with frontend (UI
framework), business logic (domain pat-
terns) and backend (data mapping), and

often additional mechanisms for local
and remote communication. The seri-
ous differences in these design solutions
are one root of well-known problems
like multi- directional inter-dependencies
between system parts, that make soft-
ware difficult to develop and hard to
maintain.

One aim of the work described in
this article was to investigate possibil-
ities for a unification of communica-
tion paradigms, that is high-level de-
sign paradigms rather than low-level pro-
tocols, in order to architect software in
a way that allows the computer system
it runs on to communicate universally.

2.3 Modelling Mistakes

Most modern software is not written
directly in a machine language but de-
signed in form of higher-level models
instead. These allow to speed up appli-
cation development and help avoiding
errors. Object Oriented Programming (OOP),
for example, uses design concepts like
the Class owning Attributes and Meth-
ods. Yet does this kind of modelling cre-
ate abstractions that reflect concepts
of the real world completely and cor-
rectly?

Fig. 5. Concept of a Horse



The model of a Horse shall serve
as example to investigate this further.
Figure 5 shows a number of terms com-
monly used to create a model of a horse.
Most importantly, there are structural
observations describing the horse as con-
cept consisting of parts like Head, Legs
or Hoofs. Secondly, there are proper-
ties like the horse’s Colour, Shape or
Size. Thirdly, there are terms describ-
ing a horse’s actions like its Movement
or Eating, that change a horse’s posi-
tion and/ or state. Finally, there are a
number of terms like Hay or Saddle as-
sociating concepts related to the horse.

One might suggest to model prop-
erties like the position, size or colour
of a horse’s leg as Part of that leg. In
fact, this is how classical programming
approaches its solutions. In OOP, one
would probably use a class representing
the leg and an attribute standing for
the leg’s colour. However, when follow-
ing the modelling principles of human
thinking (see [16]), this is not correct!

It is true that in everyday language,
one tends to say A horse leg has a colour.
Unfortunately, this leads to the wrong
assumption that a leg were made of
a colour. But this is not the case. A
leg does not consist of a colour in the
hierarchical meaning of a whole con-
sisting of parts. The colour is rather
property information about the leg. It
seems there is no correct expression in
natural (English) language stating the
property of something. The IS-A ver-
balisation is used to express that the
leg belongs to a special category of items,
for example: A leg is a body element.
The HAS-A formulation is used to ex-
press that a leg as whole consists of
smaller parts, for example: A leg has a
knee and it has a hoof. But which for-
mulation expresses a property? Well,

perhaps it would be best to say: A leg
IS-OF a colour.

The CYBOP knowledge schema de-
scribed later in this article (section 3.2)
distinguishes structural whole-part- from
meta information. Actions (like the gal-
lop of a horse) causing change in the
model or its environment are called Logic,
since they follow certain rules.

3 Reflexions on Concepts

Although many of the ideas and so-
lutions presented here, in a bottom-up
manner, stem from writing source code
in practice (following the Constructive
Development method of research as an-
nounced in section 1.4), the overall ap-
proach and explanation of results fol-
low a top-down path. High-level con-
cepts are considered first, before mov-
ing on to an implementation and proof
in practice. Because of the steady com-
parison to principles of nature and other
sciences, this approach is called cybernetics-
oriented, as explained in section 1.3.
Figure 6 shows in which order the ele-
ments of CYBOP will be considered.

Fig. 6. Consideration of CYBOP



A first observation, when looking
at human beings from a philosophical
perspective, is the separation of Mind
and Brain (Body). Accordingly, CY-
BOP treats computers as Systems own-
ing and processing Knowledge. This is
not unlike the idea of Agent systems
owning a Knowledge Base [26, 23]. All
abstract knowledge that humans make
up belongs to their mind. The brain
is merely a physical carrier of knowl-
edge. Similarly, there are actually two
kinds of software: one representing pas-
sive knowledge and the other actively
controlling a system’s hardware.

Secondly, attention is payed to the
concepts of Human Thinking [16], as
investigated by psychology. Through their
application, knowledge becomes hier-
archical. Moreover, this work tried to
embed knowledge models in an envi-
ronment of Dimensions, as known from
physics. Every model keeps a number
of Meta Information about its parts.
Positions in space or time are one such
example.

Thirdly, State- gets distinguished from
Logic knowledge. It is known from neu-
rological research that the human brain
has special communication regions that,
simply spoken, do nothing else than trans-
lating data, i.e. an input- into an out-
put State, according to rules of Logic.
Systems theory uses similar abstractions.
When talking about states, this work
means a composed Set of states.

In CYBOP (figure 6), all knowledge
(states and logic), belongs to a system’s
Statics, and is described by CYBOL
language templates (section 4.1). The
processing of knowledge at runtime, to
control a system, is Dynamics and hap-
pens in the CYBOI interpreter (section
4.2).

3.1 Statics and Dynamics

Of the many scientific fields that have
been touched and delivered design ideas
for CYBOP, only few can be elaborated
in this article, due to the limited space.

Code Reduction In his book Pro-
gramming Pearls [4, page 128], Jon Bent-
ley demonstrates Code Reduction on the
following graphics program example:

for i = [17, 43] set(i, 68)
for i = [18, 42] set(i, 69)
for j = [81, 91] set(30, j)
for j = [82, 92] set(31, j)

He suggests to replace the set pro-
cedures that switch a Picture Element
(Pixel) with suitable functions for draw-
ing horizontal and vertical lines:

hor(17, 43, 68)
hor(18, 42, 69)
vert(81, 91, 30)
vert(82, 92, 31)

This code, finally, gets reduced to
pure data stored in an array:

h 17 43 68
h 18 42 69
v 81 91 30
v 82 92 31

The data can be read by an inter-
preter program which knows about their
meaning.

Bentley’s example shows in a nice
way how knowledge can be extracted
from program source code. The graphic
application’s actual data are represented
by the values in the array above. All
other functionality accessing and ma-
nipulating Pixels directly does belong
to system control and remains in the in-
terpreter program. Section 4.2 will in-
troduce an interpreter that is able to
read and handle general knowledge, only
on a much larger scale.



Base- and Meta Level Reflective tech-
niques as described in [19] make use
of one so-called Base Level and one or
more Meta Levels. The reason for split-
ting a system’s architecture in this way
is the hope to be able to move rather
general System Functionality into a meta
level, while leaving domain-specific Ap-
plication Functionality in the base level.
(Well, in his book Analysis Patterns
– Reusable Object Models [12], Fowler
used meta levels to model general classes
containing not exclusively system- but
also domain-specific functionality.) The
conflicts a design decision of that kind
can bring with were described in [19],
which – above all – criticised the bidi-
rectional dependencies.

However, what the proposition of
reflective software patterns shows, is the
existence of a wish among software de-
velopers, to separate general system-
from more specific application function-
ality. And nature does exactly that. Yet
while reflective mechanisms use the same
implementation techniques for system-
as well as for application-specific func-
tionality, nature always treats passive
knowledge strictly separate from active
system control. The best example there-
for is the biological cell division, where
passive genetic information situated in
a Desoxy Ribo Nucleic Acid (DNA) is
read and transmitted into proteins by
an active mechanism involving Ribo Nu-
cleic Acid (RNA) molecules [16]. Bidi-
rectional dependencies do not exist be-
tween the both.

Application and Domain Over the
years, it has turned out to be helpful
in software design, to separate Domain
Knowledge from Application Function-
ality. In one-or-another form, the archi-
tectural software patterns [19] Layers,

Domain Model and Model View Con-
troller (MVC) all suggest to apply this
principle.

The Tools & Materials approach [35]
talks of active applications (tools) work-
ing on passive domain data (material).
And also System Family Engineering
[7] bases on a separate treatment of do-
main and application, in form of Do-
main Engineering (DE) and Applica-
tion Engineering (AE).

An often neglected fact of these ap-
proaches is that not only the domain,
but also the application contains im-
portant business knowledge (figure 7).
The User Interface (UI), for example,
is tailored for a specific business do-
main. And the logic behind, if not con-
tained in the UI itself, is often put in a
Controller which belongs to the application−,
not the domain layer.

Fig. 7. Different Knowledge Separations

Similarly, the domain often contains
functionality which actually does be-
long into the application process: Database
(DB) access is handled by help of pat-
terns like the Data Mapper [19], in which
the mapper
objects contain Structured Query Lan-
guage (SQL) code to connect to a Database



Management System (DBMS); Enter-
prise Java Beans (EJB), which should
better be pure domain objects, imitate
a Middleware providing persistence- or
communication mechanisms, which orig-
inally have nothing to do with the busi-
ness knowledge they contain.

It is precisely this Mixup of respon-
sibilities between an application system
and its domain knowledge, that leads
to multiple inter-dependencies and hence
unflexibility within a system. Instead, a
separation should be made between ac-
tive System Control and passive Knowl-
edge. A UI’s appearance would then be
treated as domain knowledge, just as
the logic of the functions called through
it. A data mapper would be transformed
into a simple Translator – similar to
a Data Transfer Object (DTO) [19] –
that knows how to convert data from
one domain model into another; its DBMS
access functionality, however, would be
extracted and put into the application
system. Monstrosities like EJBs would
likewise be opened up and parted into
their actual domain knowledge, and all
other mechanisms around – the latter
being moved into the application sys-
tem.

To sum up this thought: The essen-
tial realisation here is that hardware-
close mechanisms like the ones neces-
sary for data input/ output (i/o), en-
abling inter-system communication, should
be handled in an active application sys-
tem layer which was started as process
on a computer, and not be merged with
pure, passive domain knowledge. User
interfaces and application logic which
are traditionally held in controller ob-
jects of the application layer, as well
as further business data models, should
rather belong to a high-level knowledge
layer.

Platform Specific and -Independent
The Model Driven Architecture (MDA)
[25] took a first step into the right di-
rection, by distinguishing Platform In-
dependent Models (PIM), that is domain-
and application logic, and Platform Spe-
cific Models (PSM), that is implemen-
tation technology. It encourages the use
of automated tools for defining and trans-
forming these models.

While the definition, organisation and
management of architectures (PIM) mostly
happen in the analysis- and design phase
of a Software Engineering Process (SEP)
(section 2.1), the generation of source
code (PSM) can be assigned to the im-
plementation phase. The approach still
has weaknesses, and tools which can
truly generate running systems are rare
or not existent, at least to what con-
cerns more complex software systems
– not to talk of the so-called Roundtrip
Engineering, which is managed by even
less tools.

Nevertheless, the trend clearly goes
towards more model-centric approaches.
The aim of this work was to supply
domain experts and application devel-
opers with a Model Only technology,
allowing to create application systems
that do not have to be transformed into
classical implementation code any longer,
whereby the SEP abstraction gap num-
ber 2 (figure 3) could be closed con-
clusively. The knowledge schema intro-
duced in section 3.2 is a necessary pre-
requisite therefor.

Data Garden Now, if a distinction
of high-level knowledge from low-level
system control software is considered
to be useful, the next question must
be: How, that is in which form, best to
store knowledge in a system?



One possible structure called Data
Garden [20] was proposed by Wau Hol-
land of the Chaos Computer Club (CCC).
Although being a non-academic organ-
isation, his ideas on knowledge mod-
elling are interesting to this work. He
dreamt of whole Forests, Parks or – as
the name says – Gardens of Knowledge
Trees and Data Bushes (figure 8).

Fig. 8. Data Garden

The interpreter (section 4.2) created
in the work described in this article
stores all its knowledge in one single
tree, whose root node it references. The
single concepts (data bushes) are rep-
resented by branches of that knowledge
tree.

3.2 Knowledge Schema

Human beings have a brain which they
use to think, in other words to build up
a mind. While the former exists in the
Real World, the latter is constructed as
a subjective Virtual World. All people
do think, all the time, even not know-
ing that they do. One would therefore
guess that the act of Thinking is a most
common one, familiar to anybody. But
judging from the enormous research ef-

fort in sciences dealing with it, the Prin-
ciples behind thinking are not that easy
to grasp.

Schema A theoretical Model is an ab-
stract clip of the real world, and ex-
ists in the human mind. Another com-
mon word for Model is Concept. It is
the subsumption of Item, Category and
Compound, resulting from three activi-
ties of abstraction: Discrimination, Cat-
egorisation and Composition, as explained
in [16]. Each model knows about the
parts it consists of.

Fig. 9. Knowledge Schema

Yet what does this knowledge of a
compound model (whole) about its parts
imply? Software developers call knowl-
edge about something Meta Informa-
tion. Figure 9 illustrates a Schema (struc-
ture) with four kinds of meta informa-
tion in a whole-part relation.

An obvious way is to give each part
a unique Name for identification. Sec-
ondly, a compound needs to know about
the Model of each part since a part
may itself be seen as compound that
needs to know about its parts. The dis-
tinction of the several kinds of mod-
els, in other words the kind of Abstrac-



tion (compound, term, number etc.) of
a model is the third kind of informa-
tion a compound needs to know about
its parts. It is comparable to a Type
in classical system programming lan-
guages. All further kinds of meta in-
formation are summed up by a fourth
relation which is called Details.

Double Hierarchy Finally, what makes
up the character of a model (in the
understanding of the human mind) is
a combination of two hierarchies: the
Parts it consists of, together with Meta
Information about it.

Most properties of a molecule in Chem-
istry, for example, are determined by
the number and arrangement of its atoms.
Hydrogen (H2) becomes Water (H2O)
(with a totally different character) when
just one Oxygen (O) atom is added per
hydrogen molecule.

The kinds of meta information dis-
cussed in [16] were also called Dimen-
sions or Conceptual Interaction between
a Whole and its Parts. They may rep-
resent very different properties and be
constrained to certain values- or areas
of validity.

Fig. 10. Double Hierarchy (Parts | Meta)

Figure 10 illustrates the Double Hi-
erarchy here spoken of. A graphical panel
was chosen as example model. It con-
sists of smaller parts, among them be-
ing a number of buttons. Altogether
they form the Part Hierarchy. On the
other hand, there are properties like
the size, position or colour of the but-
tons, which are neither part of the panel,
nor of the buttons themselves; they are
information about the buttons and form
an own Meta Hierarchy. To the latter
do also belong constraints like the min-
imum size of a button or a possible
choice of colours for it. Properties are
(meta) information about a Part ; Con-
straints about a Property.

Container Unification Section 1.2
mentioned container inheritance as one
problem of current software. Due to poly-
morphism, it may cause unpredictable
behaviour possibly leading to falsified
container contents [24]. The previous
sections introduced a knowledge schema
which they claimed to be general. But
that also means that all kinds of con-
tainers must be representable by the
suggested schema. But why are there
so many different kinds of containers?
What actually is a container?

It is a concept expressing that some
model contains some other model(s).
Types of containers are, for example:
Collections (Array, Vector, Stack, Set,
List), Maps (Hash Map, Hash Table)
and the Tree. They all are containers.
What differs, is just the meta informa-
tion they store about their elements. A
list, for example, holds position infor-
mation about each of its elements. A
map relates the name of an element to
its model (1:1). A tree links one model
to many others (1:n).



But does the different meta infor-
mation a container holds about its el-
ements justify the existence of differ-
ent container models? If a knowledge
schema was general enough to repre-
sent a container structure on one hand,
and to express different kinds of meta
information on the other, it might be
able to behave like any of the known
container types.

The schema proposed in this work
claims to be this kind of knowledge schema.
It has a container structure by default,
and can thus hold many parts in a Tree-
like manner. It holds standard meta in-
formation about its parts: their Name,
Model, kind of Abstraction and further
meta information called Details – and
is therefore able to link the name of
an element to its model, in a Map-like
manner. To the additional meta infor-
mation (details) may belong the Posi-
tion of an element within its model, in
a List-like manner. A Table structure
can be represented as well, by splitting
it into a hierarchical (tree-like) repre-
sentation, as known from markup lan-
guages like the Hypertext Markup Lan-
guage (HTML).

Section 4.1 will introduce a language
capable of expressing all aspects of the
knowledge schema as proposed here.

Universal Memory Structure To
better explain the differences between
traditional- and cybernetics-oriented de-
sign models, an example shall help. (A
first one was given in section 2.3, which
showed modelling mistakes at the con-
cept of a horse.) Figure 11 illustrates
design-time structures in the upper half,
and runtime structures in the lower.
Using Structured- and Procedural Pro-
gramming (SPP) or Object Oriented Pro-
gramming (OOP), a developer would

design a model as shown on the upper
left-hand side in the figure. (The fact
that OOP also offers inheritance rela-
tions and OOP classes do own methods
in addition to attributes, while SPP struc-
tures do not, is of minor importance
here.) At runtime, exactly that model
would be applied to structure instances
and their relations accordingly, as shown
on the lower left-hand side in the figure.

Fig. 11. Universal Memory Structure

Not so in Cybernetics Oriented Pro-
gramming (CYBOP). Knowledge tem-
plates as created at design time do al-
ways have a hierarchical structure, as
shown on the upper right-hand side in
the figure. They include Whole-Part-
as well as Meta Hierarchies (the lat-
ter neglected in the figure). At runtime,
these templates get cloned by creating
models that follow the structure of the
CYBOP Knowledge Schema, as shown
on the lower right-hand side in the fig-
ure. While SPP/ OOP rely on a variety
of different structures to store knowl-
edge in memory, CYBOP uses one Uni-
versal Memory Structure (knowledge schema)
that, so to say, merges traditional struc-
tures like different kinds of Containers,
Class and Record/Struct. Even algo-



rithmic structures (logic) traditionally
stored in a Procedure are covered by
this knowledge schema. More on state
and logic in the following section.

The advantages are obvious. Data
available in a unified structure are eas-
ier to process. Dependencies of the knowl-
edge schema are defined clearly and re-
main the same for all applications, so
that domain/ application knowledge be-
comes independent from the underly-
ing system control software. Global data
access and bidirectional dependencies
are not necessary anymore, since every
knowledge model can be accessed along
well-defined paths within the knowledge
hierarchy. Byte code manipulation and
similar tricks and workarounds might
finally belong to the past.

3.3 State and Logic

This section investigates how classical
software system design handles State-
and Logic Knowledge and which role
they play in system communication.

Interacting Systems Figure 12 shows
a simplified example Information Tech-
nology (IT) environment (Physical Ar-
chitecture), containing many interact-
ing systems: server and client, local and
remote, human and artificial. In (ob-
ject oriented) software design, special
patterns are used to architect a sys-
tem such that it is able to communi-
cate with other systems across various
mechanisms (Logical Architecture). To
these patterns count the Data Mapper,
Data Transfer Object and Model View
Controller [13].

Although software development has
become a lot easier in the last decades,
it is still a big effort that should not be
underestimated. One thing that appli-
cation developers have to care about

Fig. 12. IT Environment with Patterns

much of their time is the Conversion
between various kinds of (communica-
tion) models that a system has:

- Frontend (with Human User)
- Backend (with Data Source)
- Remote (with Server)
- Domain (with own Knowledge)

The different mechanisms and pat-
terns that have to be considered for
such model conversion often need to be
implemented repeatedly, for each new
application. Some trials to unify all back-
end communication in a common Per-
sistence Layer exist [1], but are remote-
and frontend communication seldom con-
sidered in a comparable way. Obviously,
no current effort treats the frontend as
just another communication model that
has to be sent to the human user as just
another system.

Pattern Simplification The three com-
munication patterns mentioned before
had already been reinvestigated for com-
monalities in [18], which also embedded
them into the classical model of logical
system layers (figure 13). For all kinds
of communication, there is a:

- System (Human User, Database, Re-
mote Server)



- Model (View, ERM, DTO)
- Translator (Controller/ View As-

sembler, Data Mapper, DTO As-
sembler)

Fig. 13. Simplified Patterns in Layers

All models represent certain states;
all translators contain logic for convert-
ing one state into another; all systems
host their own, specific pool of state-
and logic knowledge. Realising this, a
much clearer view on software architec-
tures can be retrieved.

Because domain models differ be-
tween systems, each system needs its
own translator models. Only communi-
cation models need to be agreed upon
between systems; they need to be un-
derstood by both communication part-
ners.

Communication Model Systems (alive
or not) never communicate directly, but
always across the detour of an external
(transient or persistent) Medium. This
makes it necessary to use special Com-
munication Models, since nearly always,
only parts of a complete Domain Model
want to be exchanged. The use of com-
munication (transfer) models again, en-
tails the use of model Translators. Sowa

[30] writes in his book Knowledge Rep-
resentation:

In computer science, there is no
end to the number of special-
ized notations. Besides the hun-
dreds of programming languages,
there are diagrams for circuits,
flowcharts, parse trees, game trees,
Petri nets, PERT charts, neu-
ral networks, design languages,
and novel notations that are in-
vented whenever two program-
mers work out ideas at the black-
board. Musical notation . . . is
an example of a complex lan-
guage that is both precise and
human factored. As long as the
mapping rules are defined, all
of these notations can be auto-
matically translated to or from
logic.

Although he does not talk of Domain-
and Communication Models, but of No-
tations, Sowa obviously means the same:
Any kind of abstract model can be trans-
lated into any other kind, as long as the
translation Rules are defined. Model Trans-
lators are able to map domain model
data to transfer model data. Depend-
ing on which communication style is
used, different translators with differ-
ent rules need to be applied.

Figure 14 shows a number of pos-
sible model translators, for a: Textual
User Interface (TUI), Graphical User
Interface (GUI) and Web User Inter-
face (WUI) as well as for the German
standard file format for exchanging med-
ical data called x Daten Träger (xDT),
the Healthcare Xchange Protocol (HXP)
and Health Level Seven (HL7)’s exchange
format called Clinical Document Archi-
tecture (CDA).

Many application systems have ex-
actly one domain model but transfer



Fig. 14. Different Model Translators

models of arbitrary type should be addable
anytime. Translators only know how to
translate between the domain model and
a special transfer model, of course in
both directions. Direct translation be-
tween transfer models is an exception;
it is possible but better done via the
domain model.

The type of transfer model is inde-
pendent from the communication mech-
anism used. The usage of a Graphical
User Interface (GUI) model, for exam-
ple, is not necessarily limited to human-
computer interaction. It could very well
be used for data transfer between re-
mote computers, as long as both sys-
tems know how to translate that model.

Logic manipulates State According
to the observations made in the work
described in this article, there are two
kinds of knowledge: States and Logic.
While the former may be placed in a
spatial dimension, the latter is processed
as sequence over time. Often, logic is
labelled dynamic behaviour – but only
the execution of a rule of logic is dy-
namic, not the rule itself (static).

Rules of logic translate input- into
output states. What characterises a sys-

tem is how it applies logic knowledge to
translate state knowledge [15]. Yet how
to imagine a knowledge model consist-
ing of state- as well as logic parts? Fol-
lowing an example. The famous Model
View Controller (MVC) pattern was
extended by the Hierarchical MVC (HMVC)
pattern towards a hierarchy of MVC
Triads [6]. The omnipresence of hier-
archies in the MVC was demonstrated
in [17].

Fig. 15. Logic manipulating States

Figure 15 shows the three parts: Do-
main (Model), View and Logic (Con-
troller) of an (adapted) MVC pattern
as independent branches of one com-
mon knowledge tree, as existent at sys-
tem runtime in memory. Each of them
represents a concept on its own. The
logic model, however, is allowed to ac-
cess and change the view- and domain
model; it is able to link different knowl-
edge models. But view- and domain model,
representing states, are not allowed to
manipulate logic. In other words: The
dependencies between logic- and state
models are unidirectional.

An innovation is that logic knowl-
edge gets manipulatable. A logic model
(algorithm) cannot only access and change



state-, but also logic models, even it-
self! Because models modified in that
manner can be made persistent in form
of CYBOL knowledge templates (sec-
tion 4.1), and be reloaded the next time
an application starts, this may be seen
as a kind of Meta Programming, which
[9] defines as: the writing of programs
that write or manipulate other programs
(or themselves) as their data.

The clear separation of states and
logic into discrete models avoids un-
wanted dependencies as caused by the
bundling of attributes and methods in
OOP. All that would be needed to make
a CYBOP system work with new state
models, is the corresponding transla-
tion logic. Translators [18] simplify ar-
chitectures and unify communication.

4 Practical Proof

The proof of operatability for the new
concepts is given by the Cybernetics
Oriented Language (CYBOL), defined
according to the principles of abstrac-
tion worked out before, and by the Cy-
bernetics Oriented Interpreter (CYBOI),
a knowledge processing system. In ad-
dition, a prototype application called
Res Medicinae [27] was implemented in
CYBOL.

4.1 CYBOL

Document Type Definition Since
CYBOL is based on the Extensible Markup
Language (XML), a Document Type Def-
inition (DTD) can be given (figure 16).

One can recognise the purely hier-
archical structure as described by the
CYBOP knowledge schema (section 3.2).
The three elements part, property and
constraint have the same list of required
attributes.

<!ELEMENT model (part*)>
<!ELEMENT part (property*)>
<!ELEMENT property (constraint*)>
<!ELEMENT constraint EMPTY>

<!ATTLIST part
name CDATA #REQUIRED
channel CDATA #REQUIRED
abstraction CDATA #REQUIRED
model CDATA #REQUIRED>

<!ATTLIST property
name CDATA #REQUIRED
channel CDATA #REQUIRED
abstraction CDATA #REQUIRED
model CDATA #REQUIRED>

<!ATTLIST constraint
name CDATA #REQUIRED
channel CDATA #REQUIRED
abstraction CDATA #REQUIRED
model CDATA #REQUIRED>

Fig. 16. CYBOL DTD

Hello World The well-known Hello,
World! program printing just two words
shall be given as minimal example ap-
plication. It consists of only two oper-
ations: send and exit. The string mes-
sage to be displayed on screen is handed
over as property to the send operation,
before the exit shuts down the system:

<model>
<part name="send_model_to_output"

channel="inline"
abstraction="operation"
model="send">
<property name="language"

channel="inline"
abstraction="string"
model="tui"/>

<property name="receiver"
channel="inline"
abstraction="string"
model="user"/>

<property name="message"
channel="inline"
abstraction="string"
model="Hello, World!"/>

</part>
<part name="exit_application"

channel="inline"
abstraction="operation"
model="exit"/>

</model>



Container Mapping State-of-the-art
programming languages offer a num-
ber of different container types, partly
based on each other through inheritance.
Sections 1.2 and 3.2 of this work men-
tioned Container Inheritance as one rea-
son for falsified program results.

ContainerKnowledge Template

Tree Hierarchical whole-part
structure

Table Like a Tree, as hierarchy
consisting of rows which
consist of columns

Map Parts have a name (key)
and a model (value)

List Parts may have a posi-
tion property

Vector A model attribute may
hold comma-separated
values; a template holds
a number of parts (dy-
namically changeable)

Array Like a Vector; characters
are interpreted as string

Table 1. Containers in CYBOL

Section 3.2 introduced a Knowledge
Schema which represents each item as
Hierarchy by default, the result being
that different types of containers are
not needed any longer. But how are the
different kinds of container behaviour
implemented in CYBOL? Table 1 gives
an answer.

4.2 CYBOI

The pure existence of proper knowl-
edge does not suffice to create an im-
proved kind of software system, within
a slimmer software development pro-
cess. The system needs to know how

to handle knowledge, at runtime. The
criticism is twofold, since traditionally:

1. Operating systems don’t have suf-
ficient knowledge handling capabil-
ities

2. Applications contain too much low-
level system control functionality

This is changed when using CYBOI.
As active interpreter encapsulating system-
level functionality, it handles knowledge
provided in form of passive CYBOL tem-
plates. In CYBOP systems, all com-
pound knowledge models have the same
type structure (schema). Since they do
not differ, they can be manipulated in
the same manner.

Overall Placement Considering an
overall computer system architecture,
CYBOI is situated between the appli-
cation knowledge existing in form of
CYBOL templates and the Hardware
controlled by an Operating System (OS)
(figure 17). CYBOI can thus also be
called a Knowledge-Hardware-Interface
(synonymous with Mind-Brain-Interface).

Fig. 17. Knowledge – Hardware Link

There are analogies to other sys-
tems run by language interpretation.



Criterion Java
World

CYBOP
World

Theory OOP in Java CYBOP

Language Java CYBOL

Interpreter Java VM CYBOI

Table 2. Java-/ CYBOP World Analogies

Table 2 shows those between the Java-
and CYBOP world. Both are based on
a programming theory, have a language
and interpreter. A theoretical model of
a computer hardware- or -software sys-
tem may be called an Abstract Com-
puter or Abstract Machine [9]. If being
implemented as software simulation, or
if containing an interpreter, it is called
a Virtual Machine (VM). Kernighan and
Pike write in their book Practice of Pro-
gramming [22]:

Virtual machines are a won-
derful, old idea, that latterly,
through Java and the Java Vir-
tual Machine (JVM), came into
fashion again. They are a sim-
ple possibility to gain portable
and efficient program code, which
can be written in a higher pro-
gramming language.

In that sense, CYBOI is certainly
a VM. It provides low-level, platform-
dependent system functionality, close
to the OS, together with a unified knowl-
edge schema (section 3.2) which allows
CYBOL applications to be truly portable,
well extensible and easier to program,
because developers need to concentrate
on domain knowledge only. Since CY-
BOI interprets CYBOL sources live at
system runtime, without the need for
previous compilation (as in Java), changes
to CYBOL sources get into effect right
away, without restarting the system.

Architecture To what concerns its
inner architecture, there are two basic
structures underlying CYBOI:

1. Knowledge Container: An array-based
structure usable for storing static
knowledge in form of primitive- and
compound models, and capable of
representing a map, collection, list
and tree

2. Signal Checker: A loop-based struc-
ture usable for dynamically reading
signals from a queue, and capable
of processing them after their pri-
ority, in a special handler

Fig. 18. CYBOI Architecture

All modules, into which CYBOI is
subdivided, are built around these two
core structures. Not unlike John von
Neumann’s model of a computing ma-
chine [32], which distinguishes Mem-
ory, Control Unit, Algorithmic Logic Unit
(ALU) and Input/ Output (i/o), CY-
BOI’s modules are grouped into four
architectural parts, as illustrated in fig-
ure 18. These have the following func-
tionality:

– Memoriser: data creation, -destruction
and -access (after Neumann, it con-



tains not only data, but also the op-
erations that are applied to them)

– Controller: lifecycle management, sig-
nal handling, i/o filters

– Applicator: operation application (com-
parison, logic, arithmetic and more)

– Globals: basic constants and vari-
ables, as well as a logger

The i/o data handling is not sepa-
rated out here (as opposed to von Neu-
mann’s model); it is managed by the
controller modules. The i/o data them-
selves, representing states, are stored in
memory.

Functionality Figure 19 shows three
main parts of CYBOI. (The Globals pack-
age is neglectable for the following ex-
planations, since it contains static con-
stants and variables that are omnipresent.)
The Controller manages system startup,
shutdown and the handling of signals
during its runtime; the system uses just
one central signal checking loop. The
Memoriser provides memory structures
(to store knowledge) and procedures to
access these. Logic knowledge is pro-
cessed in the Applicator.

Fig. 19. Dependencies and Control Flow

4.3 Res Medicinae

Project Background The – some-
what idealistic – aim initially was to
create the prototype of a Hospital In-
formation System (HIS). Due to the
clearly too high-set aims, this was later
revised so that the focus of the proto-
type became a standard Practice Man-
agement System (PMS) with an Elec-
tronic Health Record (EHR) as its core.
Several technology changes during the
progress of this work and the lack in
time required to also revise this aim,
so that now the final prototype consists
of just the (rudimentary) address man-
agement module of the planned EHR
application. It is written in CYBOL and
executable by CYBOI.

First Trial An early trial of a Res
Medicinae module was Record, an ap-
plication for EHR management. It was
a standard Java-based system and had
a Graphical User Interface (GUI). Its
classical architecture made use of many
software patterns and was shared into
the parts Domain Model, Graphical View
and Controller, as proposed by the equally
named pattern, abbreviated MVC.

Later prototypes extended that ar-
chitecture by applying the CYBOP con-
cept of Composition. In a first step, the
Hierarchical MVC (HMVC) pattern was
used to replace the MVC pattern, re-
sulting in nested Controllers and Views.
Afterwards, the principle of Hierarchy
was applied in general, also to Domain
Models and to as many other parts as
possible.

Classes as known from Object Ori-
ented Programming (OOP) do not rep-
resent dynamically extensible contain-
ers but have a static structure with a
fixed number of attributes. In other words,



the Hierarchy as concept is not inher-
ent in OOP types. Yet abstract models
as humans build them in their minds
are always based on hierarchies (sec-
tion 3). A programming language which
does not consider this, does not allow
users to make full use of their modelling
potential.

To eliminate this flaw and imple-
ment a hierarchical structure in the Java
prototype, a top-most super class named
cybop.Model had to be introduced. It
represented a container that had the
capability to reference itself – in other
words a Tree Structure. As such, it of-
fered set, get and remove methods for
its elements. Since these access meth-
ods were inherited, sub classes did not
have to implement their own (for each
attribute) anymore, which saved hun-
dreds of lines of source code.

Fig. 20. Topological Documentation

One of these advanced modules, to
give an example, was responsible for
clinical documentation [17], which it sup-
ported graphically, in form of Topologi-
cal Documentation (figure 20). And, of
course, it could also manage and store
patient data, in XML files.

Knowledge Separation In the case
of the first prototypes, one could still
speak of true Implementation, because
design models had to be transferred into
another form of abstract model: the Java
programming language source code. Not
so in later versions of Res Medicinae.

While the early prototypes repre-
sented the classical mix of domain knowl-
edge and low-level system instructions,
that was eliminated later. All knowl-
edge got extracted and was put into
special configuration files, in CYBOL
format (section 4.1). Henceforth, these
contained not only settings like font size
or colour, as known from standard ap-
plications, but the whole domain knowl-
edge, including user interface- and work-
flow structures.

Following the explanations of sec-
tion 3.3, the static knowledge was shared
into different models, some represent-
ing state-, and others logic knowledge.
This was very much opposed to the ear-
lier Java implementations whose classes
bundled attributes and methods.

Without the knowledge, the remain-
ing program code looked pretty much
like a skeleton of basic system function-
ality. Serving as hardware interface, it
concentrated memory- and signal han-
dling in one place – exactly those things
which section 3.1 called Dynamics. Ad-
ditionally, that remaining system had
the ability to interpret knowledge, which
is why it was called CYBOI (interpreter).
One could, in some way, compare it
with what the Java Virtual Machine
(JVM) is for Java, only that CYBOI
processed knowledge given in form of
CYBOL templates, which look differ-
ent than Java source code.

CYBOI needed an XML Parser in
order to be able to read the knowledge
contained in CYBOL files. The decision



here fell on Apache’s Xerces [28], be-
cause one of its versions is implemented
in Java.

Reimplementation The architecture-
advanced prototype of the Record mod-
ule had much less functionality than
earlier ones, in fact not much more than
starting a graphical frame with menu
bar and exiting the application again.
This was so, because yet before all do-
main knowledge could be extracted into
CYBOL, another issue turned up:

CYBOP modelling concepts like Itemi-
sation or Composition are an integral
part of the CYBOL knowledge repre-
sentation language. Other concepts like
the Bundling of attributes and meth-
ods, property- and container Inheritance,
as known from Object Oriented Pro-
gramming (OOP), were considered un-
favourable (section 2) and neither to be
used in CYBOL, nor in the CYBOI in-
terpreter. Consequently, OOP languages
like Java or C++ were not suitable for
CYBOI any longer. A slim and fast lan-
guage, close to hardware and fast in
processing CYBOL was needed.

Having such requirements, one of
the first candidates coming to mind was
the C programming language. It is high-
level enough to permit fast program-
ming and low-level enough to connect
efficiently to hardware or an Operat-
ing System (OS). Many OS are written
in C themselves, anyway. CYBOI was
therefore reimplemented in C, which hasn’t
changed since. What has changed and
is changing all the time is its function-
ality, an overview of which was given in
section 4.2.

One problem that had to be solved
was Graphical User Interface (GUI) han-
dling. While the Java-implemented CY-
BOI could make use of the Abstract

Windowing Toolkit (AWT)/ Swing, the
C-implemented CYBOI did not have
such functionality at first. Toolkit can-
didates like Qt [34] or wxWindows [29],
being implemented in C++, were out.
Other GUI frameworks like the Gimp
Toolkit (GTK) [31], written in C, were
considered cumbersome to cope with
so that finally, the decision was taken
to use low-level graphics drawing rou-
tines. For CYBOI, being developed on
a GNU/Linux OS [33], that meant us-
ing XFree86’s [8] X-Library (Xlib) func-
tionality directly. The necessary effort
for transforming hierarchical CYBOL
models into GTK- or other toolkit struc-
tures was estimated to be equal or even
higher than translating them into Xlib
functionality right away. At the time of
writing this, implementation is in progress
but not completed.

Similar implementations are neces-
sary for Textual User Interfaces (TUI),
Web User Interfaces (WUI) and Socket
Communication Mechanisms, the lat-
ter two being already finished in a first
version. Further development activities
may for instance enable CYBOI to run
on other platforms and integrate more
hardware-driving functionality, to get
independent from underlying OS.

While the CYBOL specification can
be considered quite mature, CYBOI, as
could be seen, will need plenty of exten-
sions and additions in future, in order
to leave its prototype stage and become
fully usable.

Module Modelling When CYBOI had
become more stable (besides the exten-
sions that were – and are – frequently
implemented, development could focus
on the actual application again. From
now on, Res Medicinae modules only
had to be modelled in CYBOL, but no



longer had to be coded in a program-
ming language. The designed state- and
logic knowledge, existing in form of CY-
BOL templates, already represented the
complete application; no further imple-
mentation phase was needed.

Fig. 21. ResAdmin Knowledge Models

Due to the tremendous complexity
of an Electronic Health Record (EHR),
only a very small part of its data could
be considered for the application pro-
totype. Administrative data like a per-
son’s name or address are standard in-
formation found in all EHRs. A cor-
responding module named ResAdmin
[21] was therefore elected to be realised
first. Its models belong to three cat-
egories: Domain, Web User Interface
(WUI) and Logic (figure 21).

The addresses contained in the do-
main branch of the knowledge tree are
manipulated across Hyper Text Markup
Language (HTML) User Interface (UI)
models belonging to the web branch of
that same tree. An example structure
of a knowledge tree was shown in fig-
ure 15. Every action model that a user
can trigger through the WUI exists as
part of the logic branch of the knowl-
edge tree.

Independently of what kind of knowl-
edge model (state or logic) was created,
ontological principles were strictly fol-
lowed. Most importantly, relations within
a hierarchical model were always uni-
directional, that is from a Whole- to its
Part models, but never the other way
around. Additionally, however, logic mod-
els may reference and access runtime
state models.

Some of the logic models represent
Translators (compare section 3.3). They
extract address information residing in
the domain- and copy them to the web
model, which is afterwards sent to the
human user as communication partner.
This principle holds true for the com-
munication between application systems,
only that then other than web mod-
els are used as communication format.
The vision to make all communication
channels really transparent and easy to
handle for the user now seems to be
coming true.

5 Related Work

There exists a plethora of – partly Open
Source Software (OSS) – projects pro-
moting XML-based programming, us-
ing the Extensible Markup Language (XML)
as replacement for a programming lan-
guage. Many of these in fact follow the
principles of Structured- and Procedu-
ral Programming (SPP) or Object Ori-
ented Programming (OOP) with just
another syntax, and try to map the cor-
responding constructs to XML. They
are far away from the system control/
knowledge separation that CYBOP wants
to reach.

Further, XML is often used for spec-
ifying user interfaces or workflows, the
latter mostly in commercial systems.
These approaches come closer to what



CYBOP does with its language CY-
BOL, only that CYBOL can express
not only user interfaces and workflows,
but also domain knowledge and algo-
rithms.

The idea of separating system con-
trol and knowledge is used in the OpenEHR
project [3], which inspired CYBOP in
its beginnings. OpenEHR follows a meta
model approach (which it calls Dual
Model) that is based on Fowler’s Anal-
ysis Patterns [12] describing a kind of
ad hoc two-level modelling, using a Knowl-
edge Level and Operational Level – as
described by the Reflection pattern, which
calls the two levels Meta Level and Base
Level, respectively. The difference be-
tween the dual model approach and clas-
sical meta architectures is that the lat-
ter implement both, meta- and base level
using the same technology (language).
OpenEHR, on the other hand, uses so-
called Archetypes for specifying knowl-
edge, written in a special language. Be-
sides obvious benefits of OpenEHR’s
approach in constraining domain knowl-
edge, there are a number of weaknesses:

- mix of meta information (proper-
ties, constraints) and hierarchical
whole-part structure

- incomplete domain knowledge lack-
ing logic (algorithms/ workflows) and
user interfaces

- inflexible structures due to runtime-
dependency of instances from archetypes

- use of object-oriented concepts with
all their limits

Although the OpenEHR project claims
archetypes to be both: domain-empowered
and future-proof, the above-mentioned
issues prevent them from being so. The
dual model approach in conjunction with
archetypes only partly fulfills the ex-
pectations of independent and complete
knowledge structures.

6 Summary and Outlook

This article tried to sum up a much
larger scientific work entitled Cybernet-
ics Oriented Programming (CYBOP).
In particular, it reflected on knowledge
modelling and its implications on soft-
ware design. Traditional concepts were
revised with new ideas stemming from
various other scientific disciplines.

Fig. 22. Knowledge Triumvirate

The results can be reduced to one il-
lustration: the Knowledge Triumvirate
(figure 22). Its centrepiece is the new
CYBOP knowledge Schema providing
a structure to both, knowledge tem-
plates and -models. CYBOI Models are
the dynamic runtime instances of static
design-time CYBOL Templates.

Because all knowledge is stored in
tree-form, application systems become
much more flexible than complex class
networks as known from OOP. Tree struc-
tures are easy to edit. They allow to
better estimate changes caused by new
requirements, because dependencies are
obvious. Software maintenance gets im-
proved, because application developers
can focus on pure domain knowledge;
low-level system functionality is pro-
vided by CYBOI. CYBOL applications



are therefore not only portable, but rep-
resent truely long-life systems.

Fig. 23. Common Knowledge Abstraction

Although this work does not address
the Software Engineering Process (SEP)
directly, its results have great effect on
it. Section 2.1 pointed out abstraction
gaps and multiple development paradigm
switches, happening during a software
project’s lifetime. It set out to find a
Common Knowledge Abstraction for all
phases. The results of this work help
overcome Gap 2 (figure 3). Since knowl-
edge gets interpreted directly, the for-
merly needed implementation phase dis-
appears (figure 23).

CYBOP applications are capable of
communicating universally. CYBOI con-
tains all necessary mechanisms, so that
it suffices to issue a send/ receive oper-
ation with the corresponding language,
in a CYBOL template.

Naturally, there are limits to CY-
BOP. It does not claim to be the ap-
proach for all kinds of programming prob-
lems, although it thinks to contribute
suitable concepts for business applica-
tion development. However, its usabil-
ity for hardware-close systems with Real
Time (RT) requirements is questionnable,

as it cannot guarantee signal execution
in time.

References

1. Scott W. Ambler. The design
of a robust persistence layer
for relational databases. On-
line White Paper, November 2000.
http://www.ambysoft.com/persistenceLayer.html.

2. Federico Barbieri, Stefano Maz-
zocchi, and Pierpaolo Fumagalli.
Apache Jakarta Avalon Frame-
work. Apache Project, 2002.
http://avalon.apache.org/.

3. Thomas Beale, Sam Heard, and
et al. Open electronic health
record (openehr) project, for-
merly good european/ electronic
health record (gehr), April 2005.
http://www.openehr.org.

4. Jon Bentley. Perlen der
Programmierkunst. Program-
ming Pearls. Addison-Wesley,
http://www.aw.com, Boston,
Muenchen, 2000.

5. Frank Buschmann, Regine Meunier,
Hans Rohnert, and et al. Pattern-
orientierte Softwarearchitektur. Ein
Pattern-System. Addison-Wesley,
Bonn, Boston, Muenchen, 1. korr.
nachdruck 2000 edition, 1998.
http://www.aw.com/.

6. Jason Cai, Ranjit Kapila, and Gaurav
Pal. Hmvc: The layered pattern for
developing strong client tiers. Java
World Online Magazine, July 2000.
http://www.javaworld.com/javaworld/jw-
07-2000/.

7. Software Engineering Institute
Carnegie Mellon University. Do-
main engineering: A model-based
approach. Website contain-
ing technical Reports, 2003.
http://www.sei.cmu.edu/domain-
engineering/domain engineering.html.

8. The XFree86 Developers Commu-
nity. Xfree86 – the open source
x window system, June 2004.
http://www.xfree86.org/.



9. Collaborating contributors from
around the world. Wikipedia
– the free encyclopedia. Web
Encyclopedia, October 2004.
http://www.wikipedia.org.

10. Krzysztof Czarnecki and Ulrich W.
Eisenecker. Generative Program-
ming: Principles and Techniques of
Software Engineering based on auto-
mated Configuration and Fragment-
based Component Models. Addison-
Wesley, Boston, Muenchen, 2000.
http://www.aw.com.

11. Bernd Daene. Personal talk, Septem-
ber 2004.

12. Martin Fowler. Analysis Patterns –
Reusable Object Models. Addison-
Wesley, Boston, Muenchen, 1997.
http://www.aw.com.

13. Martin Fowler and et al. Patterns
of Enterprise Application Architecture
(Information Systems Architecture).
Addison-Wesley, Boston, Muenchen,
2001-2002. http://www.aw.com.

14. Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Gang
Of Four). Design Patterns. El-
ements of reusable object oriented
Software. Addison-Wesley, Bonn,
Boston, Muenchen, 1st edition, 1995.
http://www.aw.com.

15. Christian Heller. Cybernetics ori-
ented programming (cybop) in res
medicinae. In OSHCA Conference
Online Proceedings, Los Ange-
les, November 2002. Open Source
Health Care Alliance (OSHCA).
http://www.oshca.org/.

16. Christian Heller. Cybernetics ori-
ented language (cybol). IIIS Pro-
ceedings: 8th World Multiconference
on Systemics, Cybernetics and Infor-
matics (SCI 2004), V:178–185, July
2004. http://www.iiisci.org/sci2004
or http://www.cybop.net.

17. Christian Heller, Jens Bohl, Torsten
Kunze, and Ilka Philippow. A flexible
software architecture for presentation
layers demonstrated on medical docu-
mentation with episodes and inclusion

of topological report. Journal of Free
and Open Source Medical Comput-
ing (JOSMC), 1(26.06.2003):Article
1, June 2003. http://www.josmc.net.

18. Christian Heller, Torsten Kunze,
Jens Bohl, and Ilka Philippow. A
new concept for system commu-
nication. Ontology Workshop at
OOPSLA Conference, October 2003.
http://swt-www.informatik.uni-
hamburg.de/conferences/oopsla2003-
workshop-position-papers.html.

19. Christian Heller, Detlef Streitferdt,
and Ilka Philippow. A new pattern
systematics. http://www.cybop.net,
March 2005.

20. Herwart (Wau) Holland-Moritz. Der
datengarten. Internet Website, 2003.
http://www.wauland.de/datagarden.html.

21. Rolf Holzmueller. Untersuchung
der realisierungsmoeglichkeiten von
cybol-webfrontends, unter verwen-
dung von konzepten des cybernetics
oriented programming (cybop). Mas-
ter’s thesis (diplomarbeit), Technical
University of Ilmenau, Ilmenau, June
2005. http://www.cybop.net.

22. Brian W. Kernighan and Rob
Pike. The Practice of Programming.
Addison-Wesley, Boston, Muenchen,
1999.

23. Ralf Kuehnel. Agentenbasierte Soft-
wareentwicklung: Methode und An-
wendungen. Agenten Technologie.
Addison-Wesley, Muenchen, 2001.

24. Peter Norvig. The java iaq: In-
frequently answered questions.
http://www.norvig.com/java-
iaq.html.

25. Object Management Group
(OMG). Model driven archi-
tecture (mda), March 2002.
http://www.omg.org/mda/.

26. David Parks. Agent oriented
programming: A practical evalu-
ation. Web Article, May 1997.
http://www.cs.berkeley.edu/ davidp/cs263/.

27. Res Medicinae Project. Res medicinae
– medical information system, 1999-
2004. http://www.resmedicinae.org.



28. The Apache XML Project.
Xerces java parser, 2003.
http://xml.apache.org/xerces2-
j/index.html.

29. Julian Smart, Anthemion Software
Ltd., and et al. wxwidgets (for-
merly: wxwindows) cross-platform
native ui framework, April 2005.
http://www.wxwidgets.org/.

30. John F. Sowa. Knowledge Representa-
tion: Logical, Philosophical, and Com-
putational Foundations. Brooks/Cole,
Thomson Learning, Pacific Grove,
2000.

31. GTK Team. Gimp toolkit (gtk), April
2005. http://www.gtk.org/.

32. SelfLinux Team. SelfLinux – Linux-
Hypertext-Tutorial. PingoS e.V.,
Hamburg, 0.11.3 edition, June 2005.
http://www.selflinux.org/.

33. Linus Torvalds, Alan Cox, and et al.
The linux operating system kernel,
2004. http://www.kernel.org/.

34. Trolltech. Cute toolkit (qt)
c++ application develop-
ment framework, April 2005.
http://www.trolltech.com/products/qt/index.html.

35. Heinz Zuellighoven and et al.
Tools & materials approach to
software-development. JWAM
Open Source Project, 2004.
http://www.jwam.de/engl/produkt/e tmapproach.htm.


