
Reflexions on Knowledge Modelling

Christian Heller<christian.heller@tuxtax.de>
Periklis Sochos<periklis.sochos@tu-ilmenau.de>
Ilka Philippow<ilka.philippow@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

Abstract: This article reports about
an ongoing research investigating
the possibilities for applying inter-
disciplinary concepts to software sys-
tem design. The new resulting pro-
gramming philosophy is based on
firstly, a distinction of statics and
dynamics, secondly a knowledge
schema structuring models and their
meta information hierarchically, and
thirdly the separation of state- and
logic knowledge. It solves many of
the problems existing in classical
programming paradigms and lan-
guages and may have the potential
to replace these in the long run.
Keywords: Knowledge Abstraction,
Cybernetics Oriented Programming,
CYBOP, Software Design

1 Introduction

Sometimes, describing the easy things is the
most difficult. And most of the time, it seems
easier to copy existing concepts than to in-
vestigate new, but possibly more intuitive
solutions. The work described in this doc-
ument tried to question traditional concepts
of software design and to correct or simplify
these by applying new ideas stemming from
other scientific disciplines. It thus wants to
contribute to a better knowledge modelling.

The initially observed discrepancies belong
to software engineering processes (abstrac-
tion gaps), to the physical architecture (mis-
leading tiers) as well as the logical architec-
ture (modelling mistakes) of systems. They
are explained following.

1.1 Abstraction Gaps

Software has to be developed in a creative
process calledSoftware Engineering Process
(SEP) or-Methodology(figure 1).

Figure 1: Abstraction Gaps

Different forms of SEP exist:Waterfall,
Iterative, Extreme Programming(XP) and
Agile Programming. But every project, con-



sciously or not, follows a SEP that sooner-
or-later, in one form or the other, goes through
three common phases:Analysis, Designand
Implementation. Each phase creates its own
model of what is to be abstracted in soft-
ware and it is the differences in exactly these
models that often cause complications.

A previous article [Hel04] mentioned the
Requirements Document, Feature Model,
Architecture DiagramsandSource Codeas
forms of knowledge abstraction. It also des-
cribed the following abstraction gaps (see
figure 1) that have to be crossed:

1a Requirements Document – Feature M.

1b Feature Model – Architecture Diagr.

2 Architecture Diagrams – Source Code

By improving theTraceabilitybetween re-
quirements and the architecture, feature mod-
els (known from system family/ product line
engineering) contribute to minimising gap
1. Together with architecture diagrams, they
ease communication between stakeholders
in the SEP, because of their human-readable
form and implementation-independence. But
sooner-or-later, also these have to be trans-
ferred into source code, by crossing gap 2.

Bridging or closing these abstraction gaps
(sometimes calledSemantic- or Conceptual
Gaps) is also known as:achieving higher
intentionalityand remains an unsolved task
for software engineering. One aim of the
work described in this article was to con-
tribute to a possible solution, with focus on
reducinggap 2, existing between a designed
architecture and the implemented code.

1.2 Misleading Tiers

When distinguishing human- and technical
systems, the kinds ofCommunicationare:

- Human↔ Human

- Human↔ Computer

- Computer↔ Computer

Each of these relies on different techniques,
transport mechanisms, languages (protocols)
and so on. But the general principle after
which communication works, is always the
same – no matter whether technicalCompu-
ter systems or their biological prototype, the
Human Being, are considered: Information
is received, stored, processedandsent. De-
spite these common characteristics, today’s
Information Technology(IT) environments
[HKBP03] treat communication between a
computer system and a human being differ-
ently than thatamongcomputer systems.

Figure 2: Universal Communication

Figure 2 shows a three-tier environment: tier
1 represents thePresentation Layer; tier 2
stands for theApplication Layer; tier 3 is
theDatabase (DB) Layer. Typical synonyms
are, in this order:Frontend, Business Logic
andBackend. The tiers (layers) serve two
needs: connect different locations and share
work load (Scaling). However, the split into
tiers of that kind raises two illusions:

1. Users only interact with clients

2. Persistent data are stored in DB only



Many IT architectures, or at least their il-
lustrations, neglect the fact that in reality
all systems need aUser Interface(UI), for
at least being administered by humans, and
almostall systems, evenDatabase Manage-
ment Systems(DBMS) themselves, store some
of their persistent data outside a database,
for example locally available configuration
information. This is not necessarily a prob-
lem for the IT environment as such, but it is
for the internal architecture of software sys-
tems. Special solutions have to deal with
frontend (UI framework), business logic (do-
main patterns) and backend (data mapping),
and often additional mechanisms for local
and remote communication. The serious dif-
ferences in these design solutions are one
root of well-known problems like multi- di-
rectional inter-dependencies between system
parts, that make software difficult to develop
and hard to maintain.

One aim of the work described in this arti-
cle was to investigate possibilities for auni-
fication of communication paradigms, that
is high-level design paradigms rather than
low-level protocols, in order to architect soft-
ware in a way that allows the computer sys-
tem it runs on to communicateuniversally.

1.3 Modelling Mistakes

Most modern software is not written directly
in a machine language but designed in form
of higher-level models instead. These allow
to speed up application development and help
avoiding errors.Object Oriented Program-
ming(OOP), for example, uses design con-
cepts like theClassowning Attributesand
Methods. Yet does this kind of modelling
create abstractions that reflect concepts of
the real world completely and correctly?

The model of aHorseshall serve as exam-
ple to investigate this further. Figure 3 shows

Figure 3: Concept of a Horse

a number of terms commonly used to des-
cribe a horse. Most importantly, there are
structural observations describing the horse
as concept consisting of parts likeHead, Legs
or Hoofs. Secondly, there are properties like
the horse’sColour, Shapeor Size. Thirdly,
there are terms describing a horse’s actions
like its Movementor Eating, that change a
horse’s position and/ or state. Finally, there
are a number of terms likeHay or Saddle
associating concepts related to the horse.

One might suggest to model properties like
the position, size or colour of a horse’s leg
asPart of that leg. In fact, this is how clas-
sical programming approaches its solutions.
In OOP, one would probably use a class re-
presenting the leg and an attribute standing
for the leg’s colour. However, when follow-
ing the modelling principles of human thin-
king (see [Hel04]), this isnot correct!

It is true that in everyday language, one tends
to sayA horse leghas acolour. Unfortu-
nately, this leads to the wrong assumption
that a leg were made of a colour. But this
is not the case. A leg does notconsistof
a colour in the hierarchical meaning of a
whole consisting of parts. The colour is rather
property informationaboutthe leg. It seems
there is no correct expression in natural (Eng-
lish) language stating the property of some-



thing. TheIS-Averbalisation is used to ex-
press that the leg belongs to a special cate-
gory of items, for example:A leg is a body
element. The HAS-A formulation is used
to express that a leg as whole consists of
smaller parts, for example:A leg has a knee
and it has a hoof.But which formulation
expresses a property? Well, perhaps it would
be best to say:A leg IS-OF a colour.

The CYBOP knowledge schema described
later in this article distinguishes structural-
from meta information. Actions (like the
gallop of a horse) causing change in the model
or its environment are calledLogic in this
work, since they follow certain rules.

2 Architectural Troubles

The conceptual mistakes mentioned in sec-
tion 1 are partly the reason for, and partly
they are caused by incomplete programming
paradigms. Of the three abstraction princi-
ples of human thinking described in [Hel04],
OOP implementsDiscriminationandCate-
gorisationonly. Compositionas third kind
of abstraction leading to hierarchical (tree-
like) models, is not considered.

Hierarchies are not new, they are present in
many ways in today’s programming. There
are object hierarchies, process hierarchies,
design patterns modelling a hierarchy and
more. But: the hierarchy as concept is not
inherentin the type system of current pro-
gramming languages. If it were, thenevery
type would be aContainerby default. Sec-
tion 4 will introduce such a universal type.

Yet what are the results of that incomplete
type system? First and foremost, it is the
reason for the existence of multiple kinds
of container types, and therewith the reason
for falsified contents when using container
inheritance, as demonstrated in [Nor]. The

lack of a general, container-like type leads
to many strong dependencies, which could
be avoided when holding type attributes as
neutral elements. The language and inter-
preter of this work use just one structure for
knowledge representation, that covers many
of the traditional forms of containers.

Further, the bundling of attributes and me-
thods in an OOP class forces classes to not
only relate to other classes for accessing their
attributes, but also for using the methods of-
fered by them. This often leads to unfavou-
rable bidirectional dependencies [HSP05],
that many software patterns even use on pur-
pose (which is a mistake, however [HSP05]).
A related problem is that, despite multiple
relations in a huge class framework, it is
often difficult or impossible to reach some
instances along normal object associations,
which necessitates the introduction of sta-
tically (globally) accessible parts, with all
disadvantages [HSP05]. The knowledge
schema introduced later on allows to build
models with unidirectional relations only, that
are easy to navigate, without global access.

Other software design solutions likeCon-
cerninterfaces used inComponent Oriented
Programming(COP) [BMF02] or theJoin
Point Model(JPM) known fromAspect Ori-
ented Programming(AOP) [Pro02] have their
own drawbacks. Concerns spread functio-
nality and cause redundant code through over-
lapping interfaces [Hel02], which would be
avoidable using an ontological architecture
[HKBP03]. The JPM contains some unsolved
issues, pointed out by [HT04]. Models as
proposed in this article are ontologies.

System Family Engineeringapplies a so-called
Six-Packapproach [CMU03, EP01], based
on the separation ofDomain Engineering
(DE) andApplication Engineering(AE). The
work described in this article proposes a se-
paration of knowledge and system control.



3 Approach

On its way to solving the issues mentioned
in sections 1 and 2, the work followed the
Cybernetics Oriented Programming(CYBOP)
approach [Hel04]. The idea behind is as
simple as it is helpful; it suggests to:

Inspect solutions of various disciplines
of science, phenomenons of nature,

and apply them to software engineering.

Figure 4 shows some sciences whose prin-
ciples were considered in this work. The
name of a field of science is shown on top of
each box. Made observations are mentioned
below, in the middle. The resulting design
recommendations for software can be found
at the bottom of each box. The recommen-
dations are grouped into those that justify a
distinction betweenStatics and Dynamics,
a new kind ofKnowledge Schemaand a se-
paration ofState- and Logicmodels.

Figure 4: Mindmap of Influential Sciences

A first observation, when looking at human
beings from a philosophical perspective, is
the separation ofMind and Brain (Body).
Accordingly, CYBOP treats computers as
Systemsowning and processingKnowledge.
This is not unlike the idea ofAgentsystems
owning aKnowledge Base[Par97, Kue01].

Figure 5: Overall CYBOP Approach

All abstract knowledge that humans make
up belongs to their mind. The brain is merely
a physical carrier of knowledge. Similarly,
there are actually two kinds of software: one
representingpassiveknowledge and the other
activelycontrolling a system’s hardware.

Secondly, attention is payed to the concepts
of Human Thinking[Hel04], as investigated
by psychology. Through their application,
knowledge becomeshierarchical. Moreover,
this work tries to embed knowledge models
in an environment ofDimensions, as known
from physics. Every model keeps a number
of Meta Informationabout its parts.Posi-
tionsin space or time are one such example.

Thirdly, State-gets distinguished fromLogic
knowledge. It is known from neurological
research that the human brain has special
communication regions that, simply spoken,
do nothing else than translating data, i.e. an
input- into an outputState, according to rules
of Logic. Systems theory uses similar abs-
tractions. When talking about states, this
work means a composedSetof states.

In CYBOP (figure 5), all knowledge (states
and logic), belongs to a system’sStatics, and
is described by CYBOL language templates
(section 5). The processing of knowledge at
runtime, to control a system, isDynamics
and happens in the CYBOI interpreter.



4 Inter-Disciplinary Ideas

Many scientific fields (section 3) have been
touched and delivered ideas for this work,
not all of whom can be mentioned or elabo-
rated in this article. A few examples shall
be given, though; one for each proposal.

4.1 Statics and Dynamics

Over the years, it has turned out to be help-
ful in software design, to separateDomain
Knowledgefrom Application Functionality.
In one-or-another form, the architectural
software patterns [HSP05]Layers, Domain
Model andModel View Controller(MVC)
all suggest to apply this principle.

TheTools & Materialsapproach [Zea04]
talks of activeapplications (tools) working
onpassivedomain data (material). And also
System Family Engineering(section 2) bases
on a separate treatment of domain and ap-
plication, in form ofDomain Engineering
(DE) andApplication Engineering(AE).

An often neglected fact of these approaches
is that not only the domain, but also the ap-
plication contains important business know-
ledge (figure 6). TheUser Interface(UI),
for example, is tailored for a specific busi-
ness domain. And the logic behind, if not
contained in the UI itself, is often put in a
Controllerwhich belongs to the application−,
not the domain layer.

Similarly, the domain often contains func-
tionality which actually does belong into the
application process:Database(DB) access
is handled by help of patterns like theData
Mapper[HSP05], in which the mapper
objects containStructured Query Language
(SQL) code to connect to aDatabase Man-
agement System(DBMS); Enterprise Java
Beans(EJB), which should better be pure

Figure 6: Different Knowledge Separations

domain objects, imitate aMiddlewarepro-
viding persistence- or communication mech-
anisms, which originally have nothing to do
with the business knowledge they contain.

It is precisely thisMixup of responsibilities
between an application system and its do-
main knowledge, that leads to multiple inter-
dependencies and hence unflexibility within
a system. Instead, a separation should be
made between activeSystem Controland pas-
siveKnowledge. A UI’s appearance would
then be treated as domain knowledge, just
as the logic of the functions called through
it. A data mapper would be transformed
into a simpleTranslator– similar to aData
Transfer Object(DTO) [HSP05] – that knows
how to convert data from one domain model
into another; its DBMS access functiona-
lity, however, would be extracted and put
into the application system. Monstrosities
like EJBs would likewise be opened up and
parted into their actual domain knowledge,
and all other mechanisms around – the latter
being moved into the application system.

To sum up this thought: The essential re-
alisation here is that hardware-close mecha-
nisms like the ones necessary for data input/
output (i/o), enabling inter-system commu-
nication, should be handled in an active ap-
plication system layer which was started as



process on a computer, andnot be merged
with pure, passive domain knowledge. User
interfaces and other data models which are
traditionally hold in the application layer,
should rather belong to the domain layer, to-
gether with all other business knowledge.

Now, if a distinction of high-level know-
ledge from low-level system control soft-
ware is considered to be useful, the next ques-
tion must be:How, that is in which form,
best to store knowledge in a system?

One possible structure calledData Garden
[HM03] was proposed by Wau Holland of
theChaos Computer Club(CCC). Although
being a non-academic organisation, his ideas
on knowledge modelling are interesting to
this work. He dreamt of wholeForests, Parks
or – as the name says –Gardensof Know-
ledge TreesandData Bushes(figure 7).

Figure 7: Data Garden

The interpreter created in the work described
in this article stores all its knowledge inone
single tree, whose root node it references.
The single concepts (data bushes) are repre-
sented by branches of that knowledge tree.

Further arguments in favour of a distinction
of statics and dynamics are: mind & body
(philosophy), cerebral cortex & communi-
cation regions (neurology), genetic informa-
tion & cell body (biology), long- & short-
term memory (psychology), and more.

4.2 Knowledge Schema

Human beings have a brain which they use
to think, in other words to build up a mind.
While the former exists in theReal World,
the latter is constructed as a subjectiveVir-
tual World. All people do think, all the time,
even not knowing that they do. One would
therefore guess that the act ofThinkingis a
most common one, familiar to anybody. But
judging from the enormous research effort
in sciences dealing with it, thePrinciples
behind thinking are not that easy to grasp.

4.2.1 Schema

A theoreticalModelis an abstract clip of the
real world, and exists in the human mind.
Another common word forModel is Con-
cept. It is the subsumption ofItem, Cat-
egoryandCompound, resulting from three
activities of abstraction:Discrimination, Cat-
egorisationandComposition[Hel04]. Each
modelknowsabout the parts it consists of.

Figure 8: Knowledge Schema

Yet what does this knowledge of a compound
model (whole) about its parts imply? Soft-
ware developers call knowledgeaboutsome-
thingMeta Information. Figure 8 illustrates
aSchema(structure) with four kinds of meta
information in a whole-part relation.



An obvious way is to give each part a unique
Namefor identification. Secondly, a com-
pound needs to know about theModel of
each part since a part may itself be seen as
compound that needs to know about its parts.
The distinction of the several kinds of mod-
els, in other words the kind ofAbstraction
(compound, term, number etc.) of a model
is the third kind of information a compound
needs to know about its parts. It is compa-
rable to aTypein classical system program-
ming languages. All further kinds of meta
information are summed up by a fourth re-
lation which is calledDetails.

4.2.2 Double Hierarchy

Finally, what makes up the character of a
model (in the understanding of the human
mind) is a combination of two hierarchies:
the Parts it consists of, together withMeta
Informationabout it.

Most properties of a molecule inChemistry,
for example, are determined by the number
and arrangement of its atoms.Hydrogen
(H2) becomesWater (H2O) (with a totally
different character) when just oneOxygen
(O) atom is added per hydrogen molecule.

The kinds of meta information discussed in
[Hel04] were also calledDimensionsorCon-
ceptual Interactionbetween aWholeand its
Parts. They may represent very different
properties and be constrained to certain
values- or areas of validity.

Figure 9 illustrates theDouble Hierarchy
here spoken of. A graphical panel was cho-
sen as example model. It consists of smaller
parts, among them being a number of but-
tons. Altogether they form thePart Hierar-
chy. On the other hand, there are properties
like the size, position or colour of the but-
tons, which are neither part of the panel, nor
of the buttons themselves; they are infor-
mationabout the buttons and form an own

Figure 9: Double Hierarchy (Parts| Meta Info)

Meta Hierarchy. To the latter do also be-
long constraints like the minimum size of
a button or a possible choice of colours for
it. Propertiesare (meta) information about
aPart; Constraintsabout aProperty.

4.3 State and Logic

According to the observations made in the
work described in this article, there are two
kinds of knowledge:State-andLogic. While
the former may be placed in a spatial dimen-
sion, the latter is processed as sequence over
time. Often, logic is labelleddynamicbe-
haviour – but only theexecutionof a rule of
logic is dynamic,not the rule itself (static).

Rules of logic translate input- into output
states. What characterises a system is how
it applies logic knowledge to translate state
knowledge [Hel02]. Yet how to imagine a
knowledge model consisting of state- as well
as logic parts? Following an example.

The famousModel View Controller(MVC)
pattern was extended by theHierarchical
MVC (HMVC) pattern towards a hierarchy
of MVC Triads [CKP00]. The omnipres-
ence of hierarchies in the MVC was demon-
strated in [HBKP03].



Figure 10: Runtime Logic manipulating States

Figure 10 shows the three parts:Domain
(Model), ViewandLogic (Controller) of an
(adapted) MVC pattern as independent bran-
ches of one common knowledge tree, as ex-
istent at system runtime in memory. Each of
them represents a concept on its own. The
logic model, however, is allowed to access
and change the view- and domain model; it
is able to link different knowledge models.
But view- and domain model, representing
states, are not allowed to manipulate logic.
In other words: The dependencies between
logic- and state models areunidirectional.

An innovation is that logic knowledge gets
manipulatable. A logic model (algorithm)
cannot only access and change state-, but
also logic models, even itself! Because mod-
els modified in that manner can be made
persistent in form of CYBOL knowledge tem-
plates (section 5), and be reloaded the next
time an application starts, this may be seen
as a kind ofMeta Programming[Con04].

The clear separation of states and logic into
discrete models avoids unwanted dependen-
cies as caused by the bundling of attributes
and methods in OOP. All that would be needed
to make a CYBOP system work with new
state models, is the corresponding transla-
tion logic. Translators [HKBP03] simplify
architectures and unify communication.

5 Practical Proof

The proof of operatability for the new con-
cepts is given by theCybernetics Oriented
Language(CYBOL), defined according to
the principles of abstraction worked out be-
fore, and by theCybernetics Oriented In-
terpreter(CYBOI), a knowledge processing
system. In addition, a prototype applica-
tion calledRes Medicinae[Pro04] was im-
plemented in CYBOL, but will – due to the
limited space – not be explained further here.

5.1 Document Type Definition

Since CYBOL is based on theExtensible
Markup Language(XML), a Document Type
Definition(DTD) can be given (figure 11).

<!ELEMENT model (part*)>
<!ELEMENT part (property*)>
<!ELEMENT property (constraint*)>
<!ELEMENT constraint EMPTY>

<!ATTLIST part
name CDATA #REQUIRED
channel CDATA #REQUIRED
abstraction CDATA #REQUIRED
model CDATA #REQUIRED>

<!ATTLIST property
name CDATA #REQUIRED
channel CDATA #REQUIRED
abstraction CDATA #REQUIRED
model CDATA #REQUIRED>

<!ATTLIST constraint
name CDATA #REQUIRED
channel CDATA #REQUIRED
abstraction CDATA #REQUIRED
model CDATA #REQUIRED>

Figure 11: CYBOL DTD

One can recognise the purely hierarchical
structure as described by the CYBOP know-
ledge schema (section 4.2.1). The three ele-
mentspart, propertyandconstrainthave the
same list of required attributes.



5.2 Hello World

The well-knownHello, World! program prin-
ting just two words shall be given as mini-
mal example application. It consists of only
two operations:sendand exit. The string
message to be displayed on screen is handed
over asproperty to thesendoperation, be-
fore theexit shuts down the system:

<model>
<part name="send_model_to_output"

channel="inline"
abstraction="operation"
model="send">
<property name="language"

channel="inline"
abstraction="string"
model="tui"/>

<property name="receiver"
channel="inline"
abstraction="string"
model="user"/>

<property name="message"
channel="inline"
abstraction="string"
model="Hello, World!"/>

</part>
<part name="exit_application"

channel="inline"
abstraction="operation"
model="exit"/>

</model>

5.3 Container Mapping

State-of-the-art programming languages of-
fer a number of different container types,
partly based on each other through inheri-
tance. Section 2 of this work identifiedCon-
tainer Inheritanceas one reason for falsified
program results.

Section 4.2 introduced aKnowledge Schema
which represents each item asHierarchyby
default, the result being that different types
of containers are not needed any longer. But
how are the different kinds of container be-
haviour implemented in CYBOL? Table 1
gives an answer.

Container Knowledge Template
Tree Hierarchical whole-part

structure
Table Like a Tree, as hierarchy

consisting of rows which
consist of columns

Map Parts have aname(key)
and amodel(value)

List Parts may have aposi-
tion property

Vector A model attribute may
hold comma-separated
values; a template holds
a number of parts (dy-
namically changeable)

Array Like a Vector; characters
are interpreted asstring

Table 1: Mapping Containers to CYBOL

5.4 Knowledge-handling System

The pure existence of proper knowledge does
not suffice to create an improved kind of
software system, within a slimmer software
development process. The system needs to
know how tohandleknowledge, at runtime.
The criticism is twofold, since traditionally:

1. Operating systems don’t have suffi-
cient knowledge handling capabilities

2. Applications contain too much low-
level system control functionality

This is changed when using CYBOI. As ac-
tive interpreter encapsulating system-level
functionality, it handles knowledge provided
in form of passive CYBOL templates. In
CYBOP systems, all compound knowledge
models have the same type structure (schema).
Since they do not differ, they can be manip-
ulated in the same manner.



Figure 12: CYBOI Architecture

Figure 12 shows three main parts of CYBOI:
TheControllermanages system startup, shut-
down and the handling of signals during its
runtime; the system uses just one central
signal checking loop. TheMemoriserpro-
vides memory structures (to store knowledge)
and procedures to access these. Logic know-
ledge is processed in theApplicator. Paral-
lels to thevon Neumannarchitecture [Tea05]
are intended.

6 Summary and Future

This article tried to sum up a much larger
scientific work entitledCybernetics Orien-
ted Programming(CYBOP). In particular,
it reflected on knowledge modelling and its
implications on software design. Traditional
concepts were revised with new ideas stem-
ming from various other scientific disciplines.

The results can be reduced to one illustra-
tion: theKnowledge Triumvirate(figure 13).
Its centrepiece is the new CYBOP know-
ledgeSchemaproviding a structure to both,
knowledge templates and -models. CYBOI
Modelsare the dynamic runtime instances
of static design-time CYBOLTemplates.

Because all knowledge is stored in tree-form,

Figure 13: Knowledge Triumvirate

application systems become much more flex-
ible than complex class networks as known
from OOP. Tree structures are easy to edit.
They allow to better estimate changes caused
by new requirements, because dependencies
are obvious. Software maintenance gets imp-
roved, because application developers can
focus on pure domain knowledge. Low-level
system functionality is provided by CYBOI;
CYBOL applications are therefore portable.

Although this work does not address theSoft-
ware Engineering Process(SEP) directly, its
results have great effect on it. Section 1.1
pointed out abstraction gaps and multiple
development paradigm switches, happening
during a software project’s lifetime. It set
out to find aCommon Knowledge Abstrac-
tion for all phases. The results of this work
help overcomeGap 2(figure 1). Since know-
ledge gets interpreted directly, the formerly
needed implementation phase disappears.

CYBOP applications are capable of com-
municating universally. CYBOI contains all
necessary mechanisms, so that it suffices to
issue asend/ receiveoperation with the cor-
responding language, in a CYBOL template.

Naturally, there are limits to CYBOP. It does
not claim to betheapproach for all kinds of
programming problems, although it thinks
to contribute suitable concepts for business



application development. However, its us-
ability for hardware-close systems with Real
Time (RT) requirements is questionnable, as
it cannot guarantee signal execution in time.

References

[BMF02] Federico Barbieri, Stefano Maz-
zocchi, and Pierpaolo Fumagalli.
Apache Jakarta Avalon Framework.
Apache Project, 2002.

[CKP00] Jason Cai, Ranjit Kapila, and Gau-
rav Pal. HMVC: The layered pattern
for developing strong client tiers.
Java World Online Magazine, July
2000.

[CMU03] Software Engineering Institute
Carnegie Mellon University. Do-
main Engineering: A Model-based
Approach. Website containing
technical Reports, 2003.

[Con04] Collaborating Contributors.
Wikipedia – The Free Encyclo-
pedia. Web Encyclopedia, October
2004.

[EP01] ITEA Project 99005 Eureka!
2023 Programme. Engineering
Software Architectures, Processes
and Platforms for System Families
(ESAPS), September 2001.

[HBKP03] Christian Heller, Jens Bohl, Torsten
Kunze, and Ilka Philippow. A
flexible Software Architecture for
Presentation Layers demonstrated
on Medical Documentation with
Episodes and Inclusion of Topolog-
ical Report. Journal of Free and
Open Source Medical Computing
(JOSMC), 1(26.06.2003):Article 1,
June 2003. http://www.josmc.net.

[Hel02] Christian Heller. Cybernetics Orien-
ted Programming (CYBOP) in Res
Medicinae. In OSHCA Confer-
ence Online Proceedings, Los An-
geles, November 2002. Open Source
Health Care Alliance (OSHCA).

[Hel04] Christian Heller. Cybernetics Orien-
ted Language (CYBOL).IIIS Pro-
ceedings: 8th World Multiconfer-
ence on Systemics, Cybernetics and
Informatics (SCI 2004), V:178–185,
July 2004.

[HKBP03] Christian Heller, Torsten Kunze,
Jens Bohl, and Ilka Philippow. A
new Concept for System Communi-
cation.Ontology Workshop at OOP-
SLA Conference, October 2003.

[HM03] Herwart (Wau) Holland-
Moritz. Der Datengarten.
Internet Website, 2003.
www.wauland.de/datagarden.html.

[HSP05] Christian Heller, Detlef Streitferdt,
and Ilka Philippow. A new Pattern
Systematics. http://www.cybop.net,
March 2005.

[HT04] Stephan Huttenhuis and Nick Tin-
nemeier. The Join Point Model
(JPM) in Aspect Oriented Program-
ming (AOP). March 2004.

[Kue01] Ralf Kuehnel.Agentenbasierte Soft-
wareentwicklung: Methode und An-
wendungen. Agenten Technologie.
Addison-Wesley, Muenchen, 2001.

[Nor] Peter Norvig. The Java IAQ:
Infrequently Answered Questions.
www.norvig.com/java-iaq.html.

[Par97] David Parks. Agent Oriented Pro-
gramming: A Practical Evaluation.
Web Article, May 1997.

[Pro02] AspectJ Project. AspectJ: Aspect-
Oriented Java Extension, 2002.
http://aspectj.org.

[Pro04] Res Medicinae Project. Res
Medicinae – Medical Infor-
mation System, 1999-2004.
http://www.resmedicinae.org.

[Tea05] SelfLinux Team.SelfLinux – Linux-
Hypertext-Tutorial. PingoS e.V.,
Hamburg, 0.11.3 edition, June 2005.

[Zea04] Heinz Zuellighoven and et al. Tools
& Materials Approach to Software-
Development. JWAM Open Source
Project, 2004.


