
A new Pattern Systematics

Christian Heller<christian.heller@tu-ilmenau.de>
Detlef Streitferdt<detlef.streitferdt@tu-ilmenau.de>

Ilka Philippow<ilka.philippow@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

http://www.tu-ilmenau.de, fon: +49-3677-69-1230, fax: +49-3677-69-1220

Abstract

Software patterns are a great aid in designing the architec-
ture of application systems. They provide standard solutions
for frequently occuring problems.
This paper introduces a new schema for systematizing pat-
terns. It arose from firstly, the investigation of a whole spec-
trum of different patterns and secondly, the application of
the principles of human thinking to the classification of these
patterns.
This new way of sorting patterns uncovers their common
advantages but also disadvantages and may have the poten-
tial to better support developers in choosing the right pattern
solutions for their problems.
Keywords. Software Design, Pattern Systematics,
Cybernetics Oriented Programming, CYBOP

1 Introduction

Patternsare a popular architecture instrument of current
systems and languages – in the first line, however, ofObject
Oriented Programming(OOP). They describe design solu-
tions that belong to a higher conceptual level, as opposed
to the programming paradigms which are inherent to lan-
guages.

A common critics on the existence of patterns is put into
words by the freeWikipediaencyclopedia [5] that writes:

Some feel that the need for patterns results from
using computer languages or techniques with in-
sufficient abstraction ability. Under ideal factoring,
a concept should not be copied, but merely refer-
enced. But if something is referenced instead of
copied, then there is no pattern to label and cata-
log.

In other words, patterns would become superfluous, if
they could be applied justonce to a system, in a manner
that allowed any other parts of that system to reference and
reuse-, instead of copy them.

The investigation of possibilities to better abstract know-
ledge in software belongs to the aims of theCybernetics
Oriented Programming(CYBOP) project [24]. It wants to
eliminate the need for repeated pattern usage, and such en-
able application programmers, and possibly even domain
experts, to faster create better application systems.

On the way to reaching such sublime aims, a first step is
to look at current pattern solutions and try to identify what
their common characteristics are. This is what the next sec-
tions will do. Those experts who sufficiently know the pat-
terns explained following, may skip over section 2 and con-
tinue reading at section 3.

2 Pattern

2.1 Definition

Patterns, in a more correct form calledSoftware Patterns,
represent solutions for recurring software design problems
and can be understood as recommendations for how to build
software in an elegant way. In the past, more detailed defi-
nitions have been given by meanwhile well-known authors.

Christopher Alexander, an architect and urban planner,
writes [1]: Each pattern describes a problem which occurs
over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that
you can use this solution a million times over, without ever
doing it the same way twice.He gave this definition primar-
ily for problems occuring in architecture, construction, and
urban/regional planning, but it can be applied in the same
manner to software design, as done first by Ward Cunning-
ham and others [16].

The systems designer Swift [7] sees a pattern as:es-
sentially a morphological law, a relationship among parts
(pattern components) within a particular context. Specifi-
cally, a pattern expresses a relationship among parts that
resolves problems that would exist if the relationship were
missing. As patterns express these relationships, they are
not formulae or algorithms, but rather loose rules of thumb
or heuristics.

TheGang of Four(Erich Gamma et al.) applied Alexan-
der’s definition to object oriented software and created a
whole catalogue of design patterns [10]. After them, pat-
terns are:Structured models of thinking that represent reusable
solutions for one-and-the-same design problem. They shall
support the development, maintenance and extension of large
software systems, while being independent from concrete
implementation languages.The experts identified four ba-
sic elements of each pattern:Name, Problem, Solutionand
Consequences(advantages and disadvantages).



For Frank Buschmann et al., software patterns contain
the knowledge of experienced software engineers and help
to improve the quality of decision making [3]. In his opin-
ion, they areProblem Solution Pairs, that is basic solutions
for problems that already occured in a similar way before.

Martin Fowler means that:A pattern is some idea that
already was helpful in a practical context and will proba-
bly be useful in other contexts, too.[8]. After him, patterns,
however they are written, have four essential parts:Context,
Problem, ForcesandSolution.

Depending on their experience, software developers pro-
duce good or bad solutions. One possibility to improve less
well-done designs or to extend legacy systems areAnti-
Patterns(telling how to go from a problem to a bad design),
or the contrastingAmelioration Patterns(telling how to go
from a bad- to a good solution) [16]. Both help finding pat-
terns in wrong-designed systems, to improve these.

There are efforts to combine patterns to form aPat-
tern Language, also calledPattern System[3]. Such sys-
tems describe dependencies between patterns, specify rules
for pattern combination and show how patterns can be im-
plemented and used in software development practice.

2.2 Classification

Several schemes ofPattern Classificationexist. One possi-
ble is shown in figure 1. Considering the level of abstrac-
tion (granularity), it distinguishes betweenArchitectural-,
Design-andIdiomaticpatterns [3]. Design patterns, in turn,
are divided after their functionality (problem category) into
Creational-, Structural-andBehaviouralpatterns [10]. The
Wikipedia Encyclopedia [5] mentions three further prob-
lem categories:Fundamental-, Concurrency-andReal-time
patterns. Other criteria (dimensions) of classification exist.
Fowler introduces a completely different category which he
callsAnalysis Patterns[8]. These are applicable early in the
Software Engineering Process(SEP). And he defines pat-
terns that are more often used for describing the modelling
Languagethan the actualModelsasMeta Model Patterns.

Fig. 1. Software Pattern Classification

2.3 Examples

This section briefly describes a greater number of known
patterns. They are basic examples referenced by the pattern
systematics introduced in section 4.2, later-on. However,
since this section does not want to copy the work accom-
plished by the aforementioned authors, it refers to the cor-
responding literaric source for more detailed explanation.

Architectural Architectural Patternsare templates for the
gross design of software systems. They describe concrete
software architectures and provide basic structuring (mod-
ularization) principles.

Layers TheLayerspattern [3] is one of the most often used
principles to subdivide a system into logical levels. One
famous variant contains the three layersPresentation, Do-
main LogicandData Source. Another well-known example
making use of this pattern is theOpen Systems Intercon-
nection(OSI) reference model, defined by theInternational
Organization for Standardization(ISO). Numerous books
[25, 23] describe this model and its protocols.

Fig. 2. Layers Pattern

A more general illustration can be seen in figure 2. It
shows a client using the functionality encapsulated in a layer.
That top-most layer delegates subtasks to lower-level layers
which are specialized on solving them.

One variant of this pattern, mentioned by Buschmann
[3], is theRelaxed-Layered-System. It permits a layer to not
only use the services of its direct base layer, but also of yet
lower-situated layers. The base layer in this case is called
transparent.

Data Mapper Besides theDomain Logic, standard three-
tier architectures contain aData Sourcelayer which may for
example represent a database. Both layers need to exchange
data. Modern systems use OOP methods to implement the
domain model. Database models, on the other hand, are of-
ten implemented asEntity Relationship Model(ERM).



In order to avoid close coupling and a mix-up of both
layers, the introduction of an additionalData Mapperlayer
[9] in between the two others may be justified (figure 3).
The most important idea of this pattern is to abolish the in-
terdependencies of domain- and persistence model (database).

Fig. 3. Data Mapper Pattern

The dashed arrows in figure 3 indicate dependencies.
The data mapper layer knows the domain model- as well as
the data source layer, viaunidirectional relations. Its task
is to translatebetween the two, in both directions. Domain
model and data source know nothing from each other.

Each domain model class knows its appropriate inter-
face (object finder) but does not know the implementation
of the same. That is, persistence- and data retrieval mecha-
nisms are hidden in front of the domain model. The imple-
mentation (objectmapper) is part of the mapping package
and also implements all finder methods. It maps data of the
received result sets to the special attributes of the domain
model objects.

The Mediator pattern [10] is similar to theMapper, in
that it is used to decouple different parts of a system. Fowler
[9] writes: . . . the objects that use a mediator are aware of
it, even if they aren’t aware of each other; the objects that a
mapper separates aren’t even aware of the mapper.

Although theData Mapperpattern is very helpful at im-
plementing OO systems, two things are to be criticised:

Firstly, since theobject finderrelies on functionality spe-
cific to the retrieval of persistent data, it does actually be-
long into the data mapper layer what, if done, would create
bidirectional dependencies between the domain model- and
data mapper layer. But also with theobject finder remain-
ing in the domain model layer, dependencies are not purely
unidirectional. It is true that from an OO view, they are.
Internally, however, a super class or interface relates to its
inheriting classes, so that it can call their methods to satisfy
the polymorphic behaviour.

Secondly, the layers do not truely build on each other.
Taken a standard architecture consisting of the following
five – instead of only three – layers:

1. Presentation
2. Application Process
3. Domain Model
4. Data Mapper
5. Data Source

. . . the application process does not only access the do-
main model layer, it also has to manage (create and destroy)
the objects of the data mapper layer. In other words, it sur-
passes (disregards) the domain model layer when accessing
the data mapper layer directly.

Data Transfer Object It is a well-known fact that many
small requests between two processes, and even more be-
tween two hosts in a network need a lot of time. A local
machine with two processes has to permanently change the
Program Context; a network has a lot ofTransfers. For each
request, there is a necessity of at leasttwo transfers – the
Questionof the client and theAnswerof the server.

Transfer methods are often expected to deliver common
data such as a Person’s address, that is surname, first name,
street, zip-code, town and so on. These information is best
retrieved by onlyonetransfer call. That way, the client has
to wait only once for a server response and the server does
not get too many single tasks. In this example, all address
data would best be packaged together and sent back to the
client.

Fig. 4. Data Transfer Object Pattern

A scenario of that kind is exactly what theData Transfer
Objectpattern [9] proposes a solution for: A centralAssem-
bler object takes all common data of the server’s domain
model objects and assembles them together into a special
Data Transfer Object(DTO), which is a flat data structure
(figure 4). The server will then send this DTO over network
to the client. On the client’s side, a similar assembler takes
the DTO, finds out all received data and maps (disassem-
bles) them to the client’s domain model. In that manner, a
DTO is able to drastically improve the communication per-
formance.



Model View Controller After having had a closer look at
design patterns for persistence (Data Mapper) and commu-
nication (Data Transfer Object), this section considers the
presentation layer of an application, which is often realized
in form of aGraphical User Interface(GUI).

Nowadays, the well-knownModel View Controller(MVC)
pattern [3, 9] is used by a majority of standard applications.
Its principle is to have theModelholding domain data, the
Viewaccessing and displaying these data and theController
providing the workflow of the application by handling any
action events happening on the view (figure 5). This sep-
aration eases the creation of applications with many syn-
chronous views on the same data. Internally, the MVC may
consist of design patterns like:

- Observernotifying the views about data model changes
- Strategy[10] encapsulating functionality of the con-

troller, to make that functionality easily exchangeable
- Wrapperdelegating the controller functionality to the

strategy mentioned before
- Compositeequipping graphical views with a hierarchi-

cal structure

Some MVC implementations like parts of theJava Foun-
dation Classes(JFC) use a simplified version not separat-
ing controllers from their views. TheMicrosoft Founda-
tion Classes(MFC) C++ library calls its implementation
Document-View.

Fig. 5. Model View Controller Pattern

Hierarchical Model View ControllerThere exist several ex-
tensions of the MVC pattern, one of them being theHier-
archical Model View Controller(HMVC) [4]. It combines
the patternsComposite, LayersandChain of Responsibility
into one conceptual architecture (figure 6).

This architecture divides the presentation layer into hi-
erarchical sections containing so-calledMVC Triads. The
triads conventionally consist ofModel, ViewandController,
each. They communicate with each other by relating over

their controller object. Following theLayerspattern, only
neighbouring layers know from each other.

As a practical example, the upper-most triad could rep-
resent a graphicalDialog and the next lower one aPanel.
Being a container, too, the panel could hold a third triad like
for example aButton. Events occuring at the button are then
normally processed by the corresponding controller belong-
ing to the button’s triad. If, however, the button controller
cannot handle the event, that is forwarded along the chain
of responsibility to the controller of the higher-next layer. If
also the panel controller does not know how to handle the
event, the final responsibility falls to the controller of the
dialog’s triad.

The HMVC is similar to thePresentation Abstraction
Control (PAC) pattern [3]. APAC Agentis comparable to
anHMVC Triad.

Fig. 6. Hierarchical Model View Controller Pattern

Microkernel The Microkernel pattern [3] allows to keep
a system flexible and adaptable to changing requirements
or new technologies. A minimal functionalKernelgets se-
parated from extended functionality. The kernel may call
internal- or external servers (figure 7) to let them solve spe-
cial tasks which do not belong to its own core responsibility.
Internal servers are often calledDaemons.

This pattern provides aPlug & Play environment and
serves as base architecture for many modernOperating Sys-
tems(OS). Andrew S. Tanenbaum recommends its use as
well [26].

Broker TheBrokerpattern [3] may support the creation of
an IT infrastructure for distributed applications. It connects
decoupled components which interact through remote ser-
vice invocations (figure 8).

The broker is responsible for coordinating all commu-
nication, for forwarding requests as well as for transmitting
results and exceptions.



Fig. 7. Microkernel Pattern

Fig. 8. Broker Pattern

Pipes and FiltersSystems that process streams of data may
use thePipes and Filterspattern [3]. It encapsulates every
processing step in an ownFilter component and forwards
the data through channels which are calledPipeline(figure
9). Families of related systems can be formed by changing
the single filter positions. The data forwarding can follow
various scenarios:

- Push:active filter pushes data to passive filter
- Pull: active filter pulls data from passive filter
- Mixed Push-Pull-Pipeline:all filters push or pull data
- Independent Loops:all filters actively access pipeline

Reflection The Reflectionpattern [3] (also known under
the synonymsOpen Implementationor Meta-Level Archi-
tecture) provides a mechanism to change the structure and
behaviour of a software systemdynamically, that is at run-
time, which is why that mechanism is sometimes calledRun
Time Type Identification(RTTI). A reflective system owns
information about itself and uses these to remain change-
able and extensible.

Fig. 9. Pipes and Filters Pattern

Fig. 10.Reflection Pattern

Reflective informationaboutsomething is calledMeta
Information. Therefore, the level above theBase Levelin
figure 10 is labelledMeta Level. The base level depends
on the meta level, so that changes in the meta level will
also affect the base level. All manipulation of meta objects
happens through an interface calledMeta Object Protocol
(MOP), which is responsible for checking the correctness
of- and for performing a change. If a further level holds
information about the meta level, then that additional level
is calledMeta Meta Level, and so forth.

Many examples of meta level architectures exist. In his
book Analysis Patterns[8], Fowler uses them extensively.
He talks ofKnowledge Level(instead of meta level) andOp-
erational Level(instead of base level). Elements of theUni-
fied Modeling Language(UML) are defined in an own meta
model [22]. And the principles of reflection are also sup-
ported by several programming languages, such asSmalltalk
[20] andJava[17].

Classes (types) in a system have a static structure, as
defined by the developer at design time. Normally, most
classes belong to the base level containing the application



logic. As written before, one way to change the structure
and behaviour of classes at runtime is to introduce a meta
level providing type information, in other words functional-
ity thatall application classes need. This helps avoid redun-
dant implementations of the same functionality.

Looking closer at functionality, it turns out that some
basic features like persistence and communication occur re-
peatedly in almost all systems, while other parts are specific
to one concrete application. Traditionally, the application
classes in the base level have to cope with general system
functionality although that is not in their original interest.
It therefore seems logical to try to divide application- and
system functionality, and to put the latter into a meta level.

Design Gamma et al. [10] define a design pattern as:de-
scription of collaborating objects and classes which are tay-
lored to solve a general design problem in a special context.
Mostly, patterns are in relation to each other. They can be
combined to master more complex tasks.

CommandTheCommandpattern [10], also known asAc-
tion or Transaction, sometimes alsoSignal, encapsulates a
command in form of an object. That way, operations can get
parameterised; they can be put in a queue, be made undone
or traced in a log book. Figure 11 shows the structure of the
pattern.

Fig. 11.Command Pattern

Wrapper The Wrapperpattern [10] allows otherwise im-
compatible classes to work together. It can be seen as skin
object enclosing (wrapping) an inner core object, to which
it provides access. In other words: It adapts the interface of
a class which is why Gamma et al. call the patternAdapter.

As can be seen in figure 12, this pattern makes heavy
use ofDelegation, where theDelegator is the adapter (or
wrapper) and theDelegateis the class being adapted [16].

Fig. 12.Wrapper Pattern

Whole Part Whenever many components form a semantic
unit, they can be subsumed by theWhole-Partpattern [3].
It encapsulates single part objects (figure 13) and controls
their cooperation. Part objects are not addressable directly.

Almost all software systems contain components or sub
systems which could be organized by help of this pattern.
In some way, it is quite similar to the previously introduced
Wrapper, only that not just one- but many objects are wrapped.

Fig. 13.Whole-Part Pattern

CompositeA hierarchical object structure, also calledDi-
rected Acyclical Graph(DAG) or Tree, can be represented
by a combination of classes calledCompositepattern [10].
It describes aComponentthat may consist ofChildren (fi-
gure 14), which makes it comparable to theWhole-Partpat-
tern. The difference is that theCompositeis a more general-
ized version, with a dynamically extensible number of child
(part) objects.



TheCompositeis a pattern based onRecursion, which is
one of the most commonly used programming techniques at
all. The pattern’s split intoLeaf-andCompositesub classes
helps distinguish primitive- from container objects. A com-
posite tree node holds objects of typeComponent.

Fig. 14.Composite Pattern

Chain of ResponsibilityThe Chain of Responsibilitypat-
tern [10] is similar to theComposite, in that it represents a
recursive structure as well. Objects destined to solve a task
are linked with a correspondingSuccessor(figure 15), such
forming a chain. If an object is not able to solve a task, that
task is forwarded to the object’s successor, along the chain.

Fig. 15.Chain of Responsibility Pattern

The pattern found wide application, for example in help
systems, in event handling frameworks or for exception han-
dling. ItsHandlerclass is known under synonyms likeEvent
Handler, Bureaucrator Responder.

Frequently, the pattern gets misused by delegating mes-
sages not only to children but also to the parent of objects.
TheHierarhical Model View Controller(HMVC) pattern is
one example for this. It causes unfavourable bidirectional
dependencies (section 3.2) and leads to stronger coupling
between the layers of a framework, because parent- and
child objects then reference each other.

ObserverAnother pattern that found wide application is the
Observer[10], an often-used synonym for which isPublisher-
Subscriber. It provides a notification mechanism for all ob-
jects that registered asObserverat aSubjectin whose state
changes they are interested, leading to an automatic update
of all dependent objects (figure 16).

Fig. 16.Observer Pattern

Fig. 17.MVC- using Observer Pattern

Similar notification mechanisms are used forCallback
event handling in frameworks, where the framework core



calls functionality of its extensions. TheModel View Controller-
(MVC) uses theObserverpattern to let the model notify its
observing views about necessary updates (figure 17).

A disadvantage of theObserverpattern is that it relies
on bidirectional dependencies (section 3.2), so that circu-
lar references can occur, when a system is not programmed
very carefully.

Idiomatic An Idiom is a pattern on a low abstraction level.
It describes how certain aspects of components or the rela-
tions between them can be implemented using the means of
a specific programming language. Idioms can such be used
to describe the actual realization of design patterns. Besides
the Counted-Pointerpattern, Buschmann [3, p. 377] also
categorizesSingleton, Template Method, Factory Method
andEnvelope-Letter[6] asIdiom.

Template MethodThe Template Methodpattern [10], also
calledHook Method, is an abstract definition of theSkeleton
of an algorithm. The implementation of one or more steps
of that algorithm is delegated to a sub class (figure 18).

Fig. 18.Template Method Pattern

Counted PointerTheCounted Pointerpattern [3] supports
memory management in theC++ programming language,
by counting references to dynamically created objects (fi-
gure 19). That way, it can avoid the destruction of an object
through one client, while still being referenced by other
clients. Also, it helps avoiding memory leaks by cleaning
up forgotten objects.

Singleton Whenever an object-oriented system wants to
ensure that only one instance of a certain class exists, the
Singletonpattern [10] can be used. It essentially is a class
which encapsulates its instance’s data and provides global
access to them, viastatic, sometimes calledclassmethods
(figure 20).

Fig. 19.Counted Pointer Pattern

A Registryobject as described by Fowler [9] often uses
theSingletonpattern, to be unique and to become globally
accessible. Similarly do many so-calledManagerobjects,
for example change managers which are also responsible
for the caching of objects.

Global, that is static access – the main purpose of the
Singletonpattern, is its main weakness, at the same time
(section 3.3). One obvious solution to avoid singleton ob-
jects could be to forward global information from compo-
nent to component, possibly using an ownLifecycle Method,
as described in Apache Jakarta’sAvalon Framework[2].
This approach, however, might bring with a rather large
number of parameters to be handed over. The search for
further alternatives therefore remains a topic of interest.

Fig. 20.Singleton Pattern



3 Problems

This section does not describe further patterns. Instead, it
wants to come back to reflective- and other mechanisms as
described in section 2 before, and elaborate their negative
effects a bit more. Although the first of the following three
reviews concentrates on the example ofJava, many points
surely count for otherObject Oriented Programming(OOP)
languages as well.

3.1 Broken Type System

Languages likeSmalltalkor theCommon Lisp Object Sys-
tem(CLOS) offer reflective mechanisms [3]. TheC++ Stan-
dard Library, also known aslibstdc++ [18], has atype info
class providing meta information thatC++ innately does
not have.

In theJavaframework [17], finally, the basicjava.lang.*
package contains the top-most super classjava.lang.Object.
All other classes in the framework inherit from it. Additio-
nally, the package contains a classjava.lang.Classwhich,
among others, keeps reflective (meta) type information about
aJavaclass’:

- Package
- Name
- Superior Class
- Interfaces
- Fields
- Methods
- Constructors
- Modifiers
- Member Classes

Fig. 21.Java Type System

Via thegetClass()method which they inherit fromjava.
lang.Object(figure 21), all Java classes have access to that
reflective information in their meta class. The meta class
java.lang.Classitself uses so-callednativemethods to ac-
cess the information in theJava Virtual Machine(JVM).

The JVM operates on a level underneath the actual ap-
plication, close to theOperating System(OS). It interprets
the Java application source code and resolves all object-
oriented- into procedural structures, and finally low-level
system instructions. All runtime objects, that is class in-
stances, are hold in dynamic structures internal to the JVM.
That is whynativemethods need to be used to access and
change the runtime structure or behaviour of objects.

One problem that becomes obvious when inspecting fi-
gure 21 is the existence of aBidirectional Dependency, also
calledCircular Reference. The two sub dependencies caus-
ing it are:

1. Inheritanceof java.lang.Classfrom java.lang.Object
which is due to the rule that all Java classes need to
inherit from the top-most framework class

2. Associationfrom java.lang.Objectto java.lang.Class
which enables every object to access its meta class us-
ing thegetClass()method

The avoidance of circular references is one of the most
basic principles of computer programming (section 3.2).
The disadvantage of bidirectional dependencies between meta-
and basic level is also mentioned by Buschmann [3]. If meta
classes in the kind ofjava.lang.Classdefine the structure
and behaviour of all basic classes inheriting fromjava.lang.
Object, then those meta classes in turn shouldnot them-
selves inherit fromjava.lang.Object.

Another problem is the mixed and redundant storage of
meta information which Jonathon Tidswell [14] even calls a
Broken Type System. He writes:A careful examination of the
classes in the standard runtime will show that they are not
strictly instances of java.lang.Class (hint: statics).Gilbert
Carl Herschberger II [14] calls the separation of reflection
and wrappers anInconsistent Design. Java classes are based
on many different kinds of type information:

- Structure applied by the JVM through the usage of the
classkeyword

- Meta information supplied by thejava.lang.Classclass
- Reflective information provided byjava.lang.reflect.*
- Wrapper classes for primitive types injava.lang.*
- Dynamically created array classes, without having an

array class file

The fact that thejava.lang.Classclass which is to pro-
vide meta informationaboutclasses is aClassitself is an
antagonism. It is true that that meta class is madefinal to
avoid its extension by inheriting subclasses. But correctly,
it should not be a class at all.

Yet how can this paradoxon be resolved? Obviously,
one of the two dependencies betweenjava.lang.Objectand
java.lang.Classneeds to be cut. But then either thejava.lang.
Object class would not be able to access its meta infor-
mation anymore or thejava.lang.Classclass would not be
available as runtime object to other polymorphic data struc-
tures. One solution could be to merge both classes, so that
each object, by default, has the necessary methods to access
its meta information. But as it turns out, this would not be
a real solution, just aShift of the problem to another level.



As mentioned above, the JVM keeps all instances (objects)
in internal, dynamic structures. If objects were allowed to
access these internal structures via native methods (proce-
dures), a similar kind of bidirectional dependency, between
the JVM and its stored objects, would occur.

One finally has to ask whether the usage and manipula-
tion of meta information is really necessary at all! If objects
did not have astaticstructure consisting of certain attributes
and methods, as defined by the software developer at design
time, but instead based on a uniform,dynamicallychange-
able structure – the need to use reflective mechanisms might
disappear. More research has to be done on this topic.

There are other Java-related points to be criticised. Al-
though it is worth noting they exist, these arenot explained
in detail here, since this document wants to focus on gen-
eral concepts. Gilbert Carl Herschberger II [14] mentions
the problematic issue ofPre-Conditions, leading to corre-
spondingAssumptions. After him, such work-arounds were
necessary to break circular references in Java:

- Each JVM must pre-define anInternal Meta Class, im-
plemented in machine code andnot available as Java
bytecode in a class file. Thejava.lang.Classas base
meta class for all Java classes depends on that internal
meta class and assumes its existance.

- A JVM pre-defines onePrimordial Class Loader, im-
plemented in machine code and resolved at compile-
time. Since additional class loaders need to know their
meta class when being created, they have to assume
the primordial class loader exists so that, using it, their
meta class can be created first.

Jonathon Tidswell [14] is of the opinion that there are a
number of security issues related to the design of Java, for
example:

- Global names not local references are used for security
- Wrappers and names are used for reflection

Even though most of the issues raised in this section
are rather Java-specific, many of them apply to other pro-
gramming languages as well.Smalltalk[20] andCLU [19],
for example, make primitive types look like classes and do
not need specialWrapperclasses like Java. But when dig-
ging deep enough, one will find that this isSyntactic Sugar,
as Peter J. Landin used to call additions to the syntax of a
computer language that do not affect its expressiveness but
make itsweeterfor humans to use [5].

3.2 Bidirectional Dependency

Bidirectional Referencesare a nightmare for every software
developer. They causeInter-Dependenciesso that changes
in one part of a system can affect multiple other parts which
in turn affect the originating part, which may finally lead
to cycles or even endless loops. Also, the actual program
flow and effects of changes to a system become very hard
to trace. Therefore, the avoidance of such dependencies be-
longs to the core principles of good software design.

A Tree, in mathematics, is defined asDirected Acyclic
Graph(DAG), also known asOriented Acyclic Graph[21].
It has aRoot NodeandChild Nodeswhich can becomePar-
ent Nodeswhen having children themselves; otherwise they
are calledLeaves. Children of the same node areSiblings. A
common constraint is that no node can have more than one
parent., as [15] writes and continues:Moreover, for some
applications, it is necessary to consider a node’s children
to be an ordered list, instead of merely a set.A graph is
acyclic if every node can be reached via exactly one path,
which then also is the shortest possible.

In computing, trees are used in many forms, for example
asProcess Treeof anOperating System(OS) or asObject
Treeof an object-oriented application. They representData
Structuresin databases or file systems and also theSyntax
Treeof languages.

The violation of the principle of theAcyclic Graphcan
lead to the same loops, also calledCircular References, as
mentioned above, which can result in the crossing of mem-
ory limits and is a potential security risk.

3.3 Global Access

A pure tree of instances in a computer’sRandom Access
Memory(RAM) represents an unidirectional structure that
permits data access alongwell-definedpaths. Global access
via static types, on the other hand, allowsany instance to
address data in memorydirectly, which not only compli-
cates software development and maintenance, but, due to
the uncontrollable access, is a potential security risk.

The usage of static objects accessible by any other part
in a system is anAnti Patternto Inversion of Control(IoC)
[2], highly insecure and hence undesirable.

4 New Systematics

Section 2 used traditional proposals [3, 10] to systematize
patterns and divided them according to the first categori-
zation level shown in figure 1. The following sections will
work out a new systematics, to classify patterns.

4.1 Human Thinking

The new classification is based on the idea of categorizing
software patterns after the principles ofHuman Thinking,
that is concepts of the logicalMind, as opposed toArtificial
Neural Networks(ANN) that want to imitate the function-
ing of the physicalBrain.

The corresponding concepts were first introduced in [12].
After an investigation of the fundamentals of human thin-
king, that is how human beings understand their surround-
ing real world by abstracting it inModels, that paper con-
cludes that there were three basic activities of abstraction:

1. Discrimination
2. Categorization
3. Composition



By discriminating their environment, humans are able
to share it into discreteItems. Items with similar properties
can be classified into a common superCategory. Any ab-
stract model of the universe is just an illusion, being made
up of yet smaller models, and nobody knows where this hi-
erarchy really stops, towards microcosm as well as towards
macrocosm. Therefore, the third and last kind of abstrac-
tion, namely composition, lets humans perceive the items
in their environment asCompoundof smaller items.

Fig. 22.Abstractions of Human Thinking [12]

The latter two activities of abstraction – categorization
and composition – are based on specialAssociations(fi-
gure 22), between aSuper-and aSubmodel and between a
Whole-and aPart model, respectively.

4.2 Categories

Most patterns heavily rely on associations, too. This paper
therefore suggests to:

Take the Kind of Association as Criterion
to sort patterns in a completely new way.

The opposite table shows a systematics of the new pat-
tern categories with their equivalents in human thinking,
some representative example patterns and a recommenda-
tion for their usage in software engineering. Patterns match-
ing into more than one category are placed after the priority:
RecursionoverPolymorphism.

4.3 Recommendation

The first categoryItemization(objectification) is the base of
any modelling activity and clearly necessary.

The next three categories1:1 Association, 1:n Associ-
ation andRecursionare special kinds of associations that
rely exclusively onunidirectional relations and result in a
clean architecture which is why their usage is strongly rec-
ommended.

Category Equivalent Representative Advice
Itemization Discrimination Command, Data

Transfer Object,
State, Memento,
Envelope-Letter,
Prototype

:-)

1:1 Association Composition Delegator, Object
Adapter, Proxy
(Surrogat, Client-
/Server Stub),
Wrapper, Handle-
Body, Bridge

:-)

1:n Association Composition Whole-Part, View
Handler, Bro-
ker (Mediator),
Master-Slave,
Command Pro-
cessor, Counted
Pointer, Chain of
Responsibility

:-)

Recursion Composition Composite, Inter-
preter, Decorator,
Linked Wrapper

:-)

Bidirectionalism – Observer (Call-
back, Publisher-
Subscriber),
Forwarder-
Receiver, Chain
of Responsibility,
Visitor, Reflection

:-(

Polymorphism Categorization Template Method,
Builder, Factory
Method, Class
Adapter, Abstract
Factory (Kit),
Strategy (Val-
idator, Policy),
Iterator (Cursor)

:-|

Grouping Categorization Layers, Domain
Model, MVC

:-)

Global Access – Singleton, Fly-
weight, Registry,
Manager

:-(

Bidirectionalism, on the other hand, is anill variant of
the three aforementioned categories and should be avoided
wherever possible. Patterns in this category are one reason
for endless loops and unpredictable behaviour since it be-
comes very difficult to trace the effects that changes in one
place of a system have on others (section 3.2).

Polymorphismis a good thing. It relies on categoriza-
tion and due to inheritance can avoid a tremendous amount
of otherwise redundant source code. However, it also makes
understanding a system more difficult, since the whole ar-
chitecture must be understood before being able to manipu-
late code correctly. Unwanted source code changes caused
by inheritance dependencies are often described with the
termFragile Base Class Problem[3, sectionLayers]. They
are just the opposite of what inheritance was actually in-
tended to be for:Reusability[11, Vorwort].



Groupingmodels is essential to keep overview in a com-
plex software system. A very promising technology to sup-
port this areOntologies[13]. A lot of thought-work has
to go into them but if they are well thought-out, they are
clearly recommended.

The habit of globally accessing models is banned since
OOP became popular. However, it is not banned completely.
Patterns likeSingletonencapsulate and bundle global access
but they still permit it. They disregard any dependencies and
relations in a system, such are a security risk and reason for
untraceable data changes. This paper sees the whole cate-
gory ofGlobal Accessas potentially dangerous and cannot
recommend its patterns.

5 Summary and Future

This paper investigated current software pattern solutions,
to find their common characteristics. Furthermore, some of
the good and rather bad sides of classical patterns were
mentioned. The paper does not deliver solutions to these
criticisms; it merely gives an overall view on patterns.

Using ideas of the so-calledCybernetics Oriented Pro-
gramming(CYBOP), namelyHuman Thinkingand its forms
of abstraction, the paper categorized patterns in a new sys-
tematics, consisting of eight groups. It thereby hopes to pro-
vide a different view on software systems and to help iden-
tify patterns with similar concepts. By sorting patterns into
these groups, developers might be able to faster recognize
their advantages and disadvantages.

The search for solutions to the above-mentioned prob-
lems needs to continue. The CYBOP project [24] aims at
finding a way forpattern-lessapplication programming. The
idea is to apply necessary patterns just once, in theCyberne-
tics Oriented Interpreter(CYBOI), to free application de-
velopers from the burden of repeatedly figuring out suit-
able patterns. Instead, they shall be enabled to concentrate
on modelling pure application- and domain knowledge, by
writing systems in theCybernetics Oriented Language
(CYBOL), which is based on theExtensible Markup Lan-
guage(XML). Future papers will report about this progress.

References

1. Christopher Alexander, Sara Ishikawa, Muray Silverstein,
and et al. A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, New York, 1977.
https://www.patternlanguage.com/cgi-bin/patternl/order.py.

2. Federico Barbieri, Stefano Mazzocchi, and Pierpaolo Fuma-
galli. Apache Jakarta Avalon Framework. Apache Project,
2002. http://avalon.apache.org/.

3. Frank Buschmann, Regine Meunier, Hans Rohnert, and et al.
Pattern-orientierte Softwarearchitektur. Ein Pattern-System.
Addison-Wesley, Bonn, Boston, Muenchen, 1. korr. nach-
druck 2000 edition, 1998. http://www.aw.com/.

4. Jason Cai, Ranjit Kapila, and Gaurav Pal. Hmvc: The layered
pattern for developing strong client tiers.Java World, July
2000. http://www.javaworld.com/javaworld/jw-07-2000/.

5. Collaborating contributors from around the world. Wikipedia
– the free encyclopedia. Web Encyclopedia, October 2004.
http://www.wikipedia.org.

6. J. O. Coplien.Advanced C++ – Programming Styles and Id-
ioms. Addison-Wesley, Bonn, Boston, Muenchen, 1992.

7. Design Matrix – Systems and Product Design,
http://www.designmatrix.com/bionics/.Design Matrix.

8. Martin Fowler. Analysis Patterns. Reusable Object
Models. Addison-Wesley, Boston, Muenchen, 1997.
http://www.aw.com.

9. Martin Fowler and et al.Patterns of Enterprise Application
Architecture (Information Systems Architecture). Addison-
Wesley, Boston, Muenchen, 2001-2002. http://www.aw.com.

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides (Gang Of Four).Design Patterns. Elements of reusable
object oriented Software.Addison-Wesley, Bonn, Boston,
Muenchen, 1st edition, 1995. http://www.aw.com.

11. Volker Gruhn and Andreas Thiel. Komponenten-
modelle. DCOM, JavaBeans, Enterprise JavaBeans,
CORBA. Addison-Wesley, Boston, Muenchen, 2000.
http://www.aw.com.

12. Christian Heller. Cybernetics oriented language (cybol).IIIS
Proceedings: 8th World Multiconference on Systemics, Cy-
bernetics and Informatics (SCI 2004), V:178–185, July 2004.
http://www.iiisci.org/sci2004 or http://www.cybop.net.

13. Christian Heller, Torsten Kunze, Jens Bohl, and Ilka Philip-
pow. A new concept for system communication.Ontology
Workshop at OOPSLA Conference, October 2003. http://swt-
www.informatik.uni-hamburg.de/conferences/oopsla2003-
workshop-position-papers.html.

14. Gilbert Carl Herschberger II, Jonathon Tidswell, Stephen
Crawley, and et al. The jos-general mailing list. jos-
general@lists.sourceforge.net.

15. Denis Howe. Free on-line dictionary of com-
puting (foldoc). Internet Database, September
2003. http://wombat.doc.ic.ac.uk/foldoc/Dictionary.gz,
http://www.foldoc.org/.

16. Cunningham & Cunningham Inc. Portland pattern repository,
2004. http://c2.com/cgi/wiki?PortlandPatternRepository.

17. Sun Microsystems Inc. The java programming language. the
java development kit (jdk). http://java.sun.com.

18. C++ standard library (libstdc++), 2004.
http://gcc.gnu.org/libstdc++/.

19. Barbara Liskov and et al. The clu programming language,
2004. http://www.pmg.lcs.mit.edu/CLU.html.

20. Peter William Lount. Smalltalk.org, 2004.
http://www.smalltalk.org.

21. National Institute of Standards and Technology (NIST). Dic-
tionary of algorithms and data structures. Online Dictionary,
July 2004. http://www.nist.gov/dads/.

22. Object Management Group (OMG). Unified modeling lan-
guage (uml) specification, 2001. http://www.uml.org.

23. Margarete Payer and Alois Payer. Computervermit-
telte kommunikation / computer mediated communication
(cmc). Lecture Notes on Website, November 2002.
http://www.payer.de/cmclink.htm.

24. CYBOP Project. Cybernetics oriented programming (cybop),
2002-2004. http://www.cybop.net.

25. Andrew Stuart Tanenbaum.Computernetzwerke. Pearson
Studium, Muenchen, 3rd edition, 2000. http://www.pearson-
studium.com.

26. Andrew Stuart Tanenbaum.Modern Operating Systems.
Prentice-Hall, New Jersey, London, Sydney, 2nd edition,
2001. http://www.prentice-hall.com.


