
Cybernetics Oriented Language (CYBOL)

Christian HELLER<christian.heller@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

http://www.tu-ilmenau.de, fon: +49-3677-69-1230, fax: +49-3677-69-1220

Abstract

Abstracting the real world is a major aim of Informatics.
This paper introduces a new Theory and Language which
allow to better abstract the real world in clear and simplified
Models than today’s software does. It thereby helps cross-
ing a number of abstraction gaps that each software project
has to go through in its lifetime.
Sticking to Cybernetics, this paper means that one of the
first things to consider for developing good software is how
Human Thinking works and how it creates Abstractions.
Fundamental principles of human thinking are Discrimi-
nation, Categorization and Composition. The abstractions
they deliver are Item, Category and Compound. They help
the human mind to understand its environment which exists
as conglomerate, and to build meaningful models from it.

Keywords. Cybernetics Oriented Programming,
CYBOL, CYBOI, Human Thinking, Abstract Model

1 Introduction

One important area the science ofInformaticsdeals with
is software – the art ofrepresentingandprocessinginfor-
mation. As such, one of its major aims is to findAbstract
Modelswhich represent the real world best. The better this
is done and the better information can be stored and pro-
cessed, the better software can assist its human users.

Since about 40 years, the same, often unsatisfying con-
cepts are used in informatics, which caused some people
to talk about an ongoingSoftware Crisis. Since about 20
years, theFree and Open Source Software(FOSS) Move-
ment increasingly eases that pain by providing a tremen-
dous amount of code containing plenty of new concepts but
still – the dream of true componentization and reusability
has not been reached.StructuredandObject Oriented Pro-
gramming(OOP) delivered some new concepts, a major one
of was the extension of dataTypeto Class, owning inheri-
table properties and methods. However, there is a number
of problems that still keep us away from clear, effective and
above all flexible solutions, in particular the:

- false combination and grouping of information
- mix of knowledge and system control information
- bundling of static and dynamic aspects

A more detailed analysis of point one is given in [3].
Ontologiesare suggested as means for improvement in [4].

They help structuring data models by dividing a domain into
singularConcepts(as known fromKnowledge Engineering)
which later get associated with each other. Elements of a
concept are organized in strict layers which ensures flexibil-
ity for later extensions. This paper wants to use those results
but also concentrate on point two and three, as listed above,
and investigate their negative effects and possible solutions.

As a system grows, the interdependencies between its
single parts grow with. Why does this happen? Simply be-
cause a clear architecture is missing. Even if developers re-
ally try to follow a such – on some point in the software’s
lifetime, compromises have to be made due to unforeseen
requirements and dependencies:

- multiple interfaces are used to realize new properties
(Mix-In)

- static manager objects accessible by any other objects
in the system are introduced

- new layers are plugged in with varying mechanisms
- redundant code needs to be written to avoid too many

unwanted interdependencies

These decisions, in turn, can lead to buggy code with:
memory leaks, endless loops, false results, weak performance.
Can all that be avoided? And if, then how? The author’s
opinion is yes and the new concepts and language intro-
duced in this document show ways out of the misery.

2 Software Engineering Process

For a great part, the aforementioned problems are caused by
multiple Gapsin abstraction, that occure during a software
project’s lifetime. Software does not only contain and pro-
cessInformation, it is information itself. It stands at the end
of a sequence of abstractions which is called aSoftware En-
gineering Process(SEP). Software development history has
shown plenty of different forms of such processes, but most
can be categorized into one of the following:Waterfall Pro-
cess, Iterative Process, Extreme Programming(Cathedral
or Bazaarmode),Agile Software Development.

This work is not exactly about software engineering pro-
cesses, nor does it want to introduce yet another one. Its
main purpose is to deal with theResultsof software deve-
lopment phases:Abstractions. Probably every project goes
through the three common phasesAnalysis, DesignandIm-
plementation(figure 1). Each of them creates its own model
of what is to be abstracted in software:



Fig. 1. Knowledge Abstraction

The analysis often results in aRequirements Document
which investigates the problem domain and uses expert know-
ledge to specify the functionality of the software to be cre-
ated. This specification is mostlyinformal, that is an or-
dered collection of textual descriptions. Sometimes,semi-
formaldescriptions such as tables or graphics are used addi-
tionally.

It is the aim of the design phase to deliver a clear system
architecture with little redundancies and only few interde-
pendencies, which it may specify by help ofsemi-formal
Diagrams. Recent years showed an increased use of the
Unified Modelling Language(UML), a collection of dia-
gram specifications for representing static or dynamic as-
pects of a system to be modelled. Normally, atop-downap-
proach is chosen for the design of a system. Hereby, the
overall architecture is considered first, before moving into
details. The less commonbottom-updesign would start the
other way and first try to build small components to con-
struct the whole system from.

Finally, implementation of a system is doneformally, in
one (or more) programming languages. The retrievedSource
Coderepresents the final abstraction, the software that was
to be built.

It is obvious that at least two gaps have to be crossed
when using the described phases:

1. Requirements Document – Architecture Diagrams
2. Architecture Diagrams – Source Code

Many efforts try to minimize the first gap by telling
their analysis experts to specify use cases, workflows and
static structures using the corresponding diagrams provided
by theUnified Modelling Language. Other efforts introduce
more steps of abstraction, like theFeature Model. It pro-
vides a hierarchical model of the features of the system to be
built. The feature analysis is part of the analysis but can log-
ically be placed between analysis and design. It became es-
pecially popular in the area ofSystem Family/ Product Line
Engineering. Yet the disadvantage of using feature models
is that another gap in abstraction is created:

1. Requirements Document – Feature Model
2. Feature Model – Architecture Diagrams
3. Architecture Diagrams – Source Code

One aim of the work described in this document was to
overcome these gaps by supplying one kind of abstracted
knowledge, for statics as well as for dynamics, to be contin-
uously used throughout all project phases.

3 Traditional Programming

Section 2 pointed out a problem that all current software en-
gineering processes are struggling with:Abstraction Gaps.
To find out about possible reasons, traditional and current
programming concepts need to be inspected closer.

3.1 Property Bundling

Software consists of data which can be processed by a com-
puter. This is possible becausequalitative data are trans-
formed intoquantitativedata and, finally, toZeroandOne.
Mathematicsdelivers theLogic (Operations) after which
States(Operands) can be mapped, to deliver the expected
results.

When combining a number of operations in a certain or-
der, anAlgorithm is retrieved. The operands it works with
are stored inVariables. As can be seen, there is alwayssta-
tic anddynamicstructures involved, the static holding the
states and the dynamic holding the rules for mapping be-
tween states.

Structured/ Procedural Programminglanguages were
the first to explicitly provide the means to model staticStruc-
turesas well as dynamicProcedures(or Functions, respec-
tively). Both can be cascaded inHierarchiesand even use
Recursionfor that.

Yet other synonyms for static and dynamic structures
that were introduced by the nowadays more popularObject
Oriented Programming(OOP) areAttribute and Method.
Both can be properties of anObject which is the runtime
instance of aClasswhich in turn represents the dataType.
A class caninherit properties from asuperclass. ThisIn-
heritancewas a truely new and innovative concept brought
in by OOP. TheBundlingof static and dynamic properties
(attributes and methods), on the other hand, causes more
system interdependencies and complications than were pre-
dictable. It is a big disadvantage that affects all modern
object-oriented systems.

Certainly, the bundling stems from best intentions to re-
ceive cleaner code by keeping not only attributes but also
methods in a common module, such avoidingwild andglobal
procedures. But now, modules not only had to refer to other
modules for accessing their data; the same was needed for
accessing methods. With OOP, the number of cross-relations
between modules and system interdependencies in general
nearly always rise dramatically. In reality, static and dyna-
mic properties are twodifferentthings that have to be kept in
different places! Both can have a similar, hierarchical struc-
ture but each is a concept on its own.



Interfaceinheritance is used to implementConcernsin a
system.Aspect Oriented Programming(AOP) calls its con-
cernsAspectsand uses special language means to imple-
ment them. With standard class constellations,Design Pat-
ternsprovide clear solutions describing how best to com-
bine (associate/ inherit) classes. As subsumption of many
design patterns, aFrameworkaims to provide basic func-
tionality for the applications to be embedded into it. All
these efforts are based upon OOP. The main idea behind
them is to prevent code duplication and to minimize the
interdependencies between parts of a system. But what if
OOP is one reason for just those interdependencies?

Big systems with a multitude of associations and depen-
dencies often lead to a loss in overview which results in so
calledSpaghetti Code. Component Oriented Programming
(COP) tries to solve this by encapsulating code in smaller
Componentswhich shall make it easier to keep overview.
People started to dream about a simple combination of such
components and called it theLEGO Metapher(with relation
to the building blocks for children). But software models
are not simple building blocks that could be builtStone-on-
Stone! They are concepts as known fromHuman Thinking.

The components described to here arepassivebecause
they need a system to call them. More recent studies are
aboutactivecomponents, sometimes calledAgents. These
are self-acting processes that solve special tasks. The con-
cepts behind are calledAgent Oriented Programming.

Passive components and all of the programming con-
cepts described before them belong to theLogical Archi-
tectureof a system. The termPhysical Architectureis used
when it comes to active components, agents, processes or
systems in general.

3.2 Information Mix

Of course, the bundling of static and dynamic properties as
used in OOP is not the only factor causing interdependen-
cies. Otherwise, traditional procedural programming lan-
guages had already delivered ideal systems. But this is not
the case. Something else must be missing. The major prob-
lem of today’s software is itsMix of two very different kinds
of information:System ControlandApplication Knowledge.

A standard computer architecture consists of aMem-
ory (which stores data), aProcessor(that applies operations
on the data),Input/Output Devices(to correspond with the
environment) and aBus System(that connects the before-
mentioned parts). All these devices need to be controlled in
some way. Variable values (instances) need to be written to
and read from the memory; operations which the processor
offers need to be called; input and output values need to be
exchanged through the corresponding input/output devices.

Most of this is done by anOperating System(OS) and its
hardware drivers. However, programming languages allow
their users to access hardware, too. Software programmers
can send processor instructions, they can allocate (instanti-
ate) memory etc. It is these possibilities which lead to mem-
ory leaks and further software problems. If the operating
system, for example, concentrated all memory allocation in
one place, forgotten instances would belong to the past.

The remaining code represents the actualApplication.
It contains theDomain Knowledge, theConcepts, theCon-
figuration information. These models of real world phe-
nomenons have nothing to do with hardware control and
need to be treated differently.

4 Human Thinking

Criticising State-of-the-Artconcepts is one part of science;
offering improved solutions is its complementary. Researchers
quite often follow the approach of first looking into what
nature offers and then trying to engineer a similar solution.
All kinds of tools and machines were created this way, even
(and most obviously, with respect to the human body and
mind) robots and computers. Some scientists take the prin-
ciples of human awareness as physical model to explain the
universe [10]. Some business people and consultants see
analogies between processes in the human brain and organ-
isational structures of a company [11]. Researchers in hu-
man sciences systematise international public law by shar-
ing it into the three parts society, cooperation and conflicts
which are chosen in analogy to biology, that is anatomy,
physiology and pathology of international relations [1]. Con-
sidering all that, one question is at hand:

Why not apply a similar approach to
software engineering?

The science ofCyberneticsand its specializationBion-
icsrecommend tocomparecommunication and control pro-
cesses in biological versus artificial systems as well as to
applybiological principles to the study and design of engi-
neering systems. If computers are built after the model of
the human being (information input, memorizing, process-
ing and output), why not structure the software that actually
runs those computers after similar models? It seems logical
and clear, yet the reality looks different. This section will
therefore consider howHuman Thinkingworks and how it
creates abstractions (figure 2).

Fig. 2. Human Thinking



4.1 Item

As first and most important abstraction, the human brain di-
vides its real-world environment into discreteItems. Physi-
cists call smaller itemsParticle. Plenty of other synonyms
exist. Software developers often talk ofObject. This doc-
ument preferrably uses the more neutral nameItem, since
models are created not only of objects but also ofSubjects.

Behavioural psychologists talk of this ability asDis-
crimination. It commonly focuses on a specific real world
phenomenon, leaving out parameters which are not inter-
esting in the given context. This is necessary because oth-
erwise, a brain would have to model and capture the whole
universe (with every single particle being duplicated), which
is obviously impossible. As example, aHuman Beingas
item is stated (in parentheses) in figure 2.

Not only human beings, but also some higher animal
species (like apes) are able todiscriminatetheir environ-
ment and to form terms to name it. Additionally, they have a
primitive Self Concept, that is a term for their own personal-
ity. However, their cognitive abilities are limited in that con-
cepts are only available in the presence of the corresponding
item. Jaeger [5] calls thatOnline Thinking; cognition scien-
tists speak ofTerms of first Orderor Sensoric Type of Terms.

Contrary to this, the more advancedOffline Thinking
allows humans to think about items they currently cannot
sense. Cognition scientists here speak ofTerms of second
Order. They became possible byassociatingsensoric sig-
nals with terms of a language. The resultingNet of Associ-
ationsbrought a number of advantages [5]:

– Decouplingthinking from immediate motoric reaction
– Time Indexin scenes so that past memories can be

recalled, the future be planned
– Dual Representationof online and offline contents
– Self Awarenessthanks to online and offline thinking
– Associationsincreasing the expressiveness of terms

4.2 Category

Offline thinking (in terms of second order) enables humans
not only to discriminate items but also tocategorizethem
into superior groups. Since it is impossible to exactly model
the real world in complete, compromises have to be made:
People do not model every single item in their minds but
rather group them intoTypes(Classes) of common charac-
teristics.

This kind of classification stems from the earliest days
of ancient science.Plato’s pupil Aristotle(being the teacher
of Alexander the Great) was the first philosopher who log-
ically captured and organized the world. It was him who
sorted items into clear groups which he calledCategories.
And it was him who first distinguished betweenenlivened
andunenlivenednature; who parted living forms intoPlants,
AnimalsandHumans. The science of biology calls this clas-
sification aSystematics.

Categorization(classification) can be seen from two sides,
depending on what direction of that relationship one wants
to emphasize. Taking Aristotle’s examples,Living Thing

would be aGeneralizationof Plants, AnimalsandHumans.
Human Beingwould be aSpecializationof Living Thing.

Software developers call categorization anis-a relation-
ship and talk ofSuperandSubcategories (sometimes also
Parent and Child categories). Section 3.1 mentioned that
object oriented programming uses categorization to let a sub
class inherit attributes and methods from its super class.

4.3 Compound

Compositionis the third kind of abstraction that humans
use to understand their environment. It is an important in-
strument for the human mind to associate information, that
is to acquire, store and recallKnowledge. Every item is re-
cognized as aCompoundof smaller items and can therefore
also be calledTreeor Hierarchy. The subject ofArtificial
Intelligence(AI)/ Knowledge Engineeringtalks ofConcept
or Schema.

In software design, the termsParentandChild are often
used to describe both, the items in a composition as well as
the items in a categorization relationship (section 4.2). To
avoid misunderstandings, this document sticks to the terms
Superand Sub for categorization and to the termsWhole
andPart [12] for composition. Yet other terms to describe
items of a composition would beContainerandElement.

To stick with the example of aHuman Being, one could
say that it is composed ofOrganssuch asEye, Ear, Heart,
Brain, Arm and further, also smaller parts. Other examples
are the concept of anAtomconsisting of aCore andElec-
trons or that of a physicalBookcomposed of aPaperback
Cover and Paper Pages. However, knowledge representa-
tion always depends on what one wants to express in which
context. TheBook, for example, can be represented in many
other ways. Logically, it is usually separated intoPart, Chap-
ter, Section, Paragraph, Sentence, WordandCharacter.

It is important to note theunidirectionalkind of rela-
tions: A human being is composed of organs but an organ is
never composed of a human being!

Not only static items represent a compound;dynamic
items are hierarchical as well. The processTake Book from
Library, for example, may have the following structure:

– Check Catalogue
• Investigate suitable Books
• Note Registration Number

– Organize Book
• Look for Shelf
• Take off Book

– Borrow Book

Returning to human thinking, one realizes that in the
end, everything in universe can be put into variable hierar-
chical models, that is consists of smaller items and belongs
to a bigger item. From the physical point of view, nobody
knows where this hierarchy really stops, towardsMicro-
cosmas well as towardsMacrocosm. There is noabsolute,
basic item. A Particle as concept exists only in the human
mind, placed somewhere between micro- and macrocosm,
with hypothetic borders.



4.4 Model

A theoreticalModelis an abstract clip of the real world, and
exists in the human mind. Another common word forModel
is Concept. It is the subsumption ofItem, Categoryand
Compound, resulting from the three activities of abstrac-
tion: Discrimination, CategorizationandComposition. As
such, each model knows about its super model and the parts
it consists of (figure 3). Software developers would call the
illustration of these relations aSchemaor Meta Model.

Fig. 3. Model as subsumption of Item, Category, Compound

4.5 Interaction

As explained in previous sections, every abstract model is a
Compoundof smallerParts. What does this relation imply?
What does a compoundknowabout its parts? Knowledge
aboutsomething is often calledMeta Information.

The most obvious way to uniquely identify parts is to
give them aName. The concept of a human body, for exam-
ple, has parts likeHeart, Left Armor Skin. Secondly, a com-
pound needs to know about theModel of each part which
may be a compound itself. But what about other knowledge
like the order or position of parts within their compound?

To find an answer, the science ofPsychologyneeds to
be called in. It distinguishes between various aspects of a
(visual) impression of the human mind, as there areShape,
Depth, Color or Movement[13]. Looking closer at these,
one realizes that they are representations of the classical
physical dimensions that humans use to describe the world:

– Movement: changing the state of something overTime
– Shape: how items would appear in a two-dimensional

world, as known fromGeometry
– Depth(stereo vision): adding a third dimension to shapes,

so that these become three-dimensional and form aSpace
– Color: not being considered a dimension, telling about

how items reflectLight
– Mass: another physical value describing the world which

is not considered to be a dimension

If, according to modern physics, not all of the impres-
sions listed above are dimensions, what is common to them?
– All can be used to express a special aspect of a composi-
tion relation which this paper callsComposition Interaction.

To the concept of anAtombelong aCoreandElectrons.
The atom provides theSpacethat the core and electrons can
fill with their extension. For core and electrons, the atom
represents the small universe they live in. Moreover, the
atomknowsabout thePosition(Trajectory) of each electron.
Thus, one can say that the atom as aWholeinteracts with its
Partsby means of space. Electrons, on the other hand, know
nothing about their own position within the atom; they do
not know about the existence of the atom at all. But having
a size, they indirectly exert influence on the whole atom by
contributing to its overall extension in space.

A Solar System, as concept, has very much in common
with the atom. It has a star, theSun, as its core and it has
Planetsorbiting around that star. Besides the composition
interaction over space that also exists here, there is another
relation worth paying attention to:Mass. Conceptually, the
solar system can be treated as a closed field ofMass, the sun
representing the center of that mass, the planets additions.
The solar system as aWholeknows about the masses of its
Parts, what can be considered a conceptual interaction.

A third relation that humans use to place themselves and
the environment into their very own model of the universe is
Time. Any Processcan be split intoSub Processesand such
represents a structure withhierarchical character. In most
cases, theOrder in which sub processes are executed, is
very important. Without it, no meaningfulAlgorithmcould
ever be created. A process knows about theOccurrenceof
its sub processes and this sequence information is stored
in units of time. Moreover, theWholeprocess sets a time
frame that allPart processes, in sum, cannot exceed. Their
Duration is limited. Again, process and sub processes have
some kind of composition relation; in this case over time.

Conceptual interactions likeSpace, Massor Time are
used by a model to position parts within its area of validity.
Yet this meta knowledge is not enough. Frequently, parts
have to beconstrainedto maintain the validity of the whole
model. The concept of aTable consists of aTop and one
to four Legs. The additional information herein is theCon-
straintof the number of legs to at leastoneand at mostfour.

Finally, what makes up theCharacterof an item (in the
understanding of the human mind) is thePartsit consists of,
combined withMeta Informationabout these parts. Most
properties of a molecule inChemistryare determined by
the number and arrangement of its atoms.Hydrogen(H2)
becomesWater (H2O) (with a totally different character)
when oneOxygen(O) atom is added per hydrogen molecule.

Properties are based on impressions of the human mind
which are often identical to what is called aDimensionin
physics. ItemPropertiesthat do not result from its com-
posed nature have to be defined additionally as size in space
(expansion), in time (duration, instant), in mass (massiness)
or color as speciality. While such dimension properties of
an item are given as theDifference(size) of something, a
conceptual interaction between a compound and its parts is
stated asPoint (position).



5 Cybernetics Oriented Language

The introducedCybernetics Oriented Language(CYBOL)
is based on the principles ofHuman Thinkingas described
in section 4. These principles and further concepts behind
are summarized by the nameCybernetics Oriented Pro-
gramming(CYBOP) (figure 4). They form the semantics of
CYBOL. Its syntax is determined by theExtensible Markup
Language(XML) standard and accordingly easy. It is rich
enough to express models based upon the three kinds of
abstraction:Discrimination, CategorizationandComposi-
tion as well as meta information of aWholeabout itsParts.

Fig. 4. CYBOP

5.1 Syntax

An XML document carries a name and can such represent
a Discrete Item. It can also link to other documents, such
as one being aSuper Categoryto the item currently con-
sidered. Most importantly, XML documents have a hierar-
chical structure based onTagswhich may be used to model
Partsof aCompound. TagAttributeskeepMeta Information
about the tag contents.

Considering these properties of XML, it seems predes-
tinated for formally representing abstract models using the
CYBOP concepts. CYBOL, finally, is XMLplusa defined
set of tags and attributes used to structure and link models
meaningfully. The tags are:<model>, <super>, <part>.

5.2 Vocabulary

XML allows to define and exchange the whole vocabulary
of a language. It offers two ways in which a list of legal el-
ements can be defined: The traditionalDocument Type Def-
inition (DTD) and the more modernXML Schema Defini-
tion (XSD). Besides the vocabulary, DTD and XSD define
the structure of an XML document and allow to typify, con-
strain and validate items. The CYBOL DTD and XSD can
be found at [7].

5.3 Semantics

CYBOL files can be used to model eitherstaticor dynamic
aspects. In both cases, thesamesyntax (document structure)
with identicalvocabulary (tags and attributes) is applied. It
is the attributeValuesthat make a difference in meaning.
An Attributekeeps meta information about the contents of
a Tag. In CYBOL, the tag of main interest ispart. Its at-
tributes contain information about its:

– Name (to identify different parts)
– Model (compound or primitive)
– Position (in space, time or mass)
– Constraint (minima, maxima and further limitations)

What is missing is a means to keep such meta informa-
tion about an attribute, too. How should an interpreter know
if it deals with acompoundor a primitive model, with a
position in Spaceor in Time? It is therefore necessary to
bundleattributes inPairs of Two, one attribute containing
the actual value and the second attribute containing abs-
traction information about how the first attribute gets inter-
preted correctly. The only exception is the name which gets
always interpreted as string of characters. The resulting at-
tributes of thepart tag are:

– name
– part abstraction
– part model
– positionabstraction
– positionmodel
– constraintabstraction
– constraintmodel

A list of defined, primitive abstraction values for CYBOL
can be found in [7].

5.4 Example

The following example shows a minimalistic model of a
(static)Graphical User Interface(GUI) frame.

<!--
frame_example.cybol

/-->
<model>

<part name="title"
part_abstraction="string"
part_model="Res Medicinae"/>

<part name="menu_bar"
part_abstraction="compound"
part_model="/gui/menu_bar.cybol"
position_abstraction="compass"
position_model="north"/>

<part name="status_bar"
part_abstraction="compound"
part_model="/gui/tool_bar.cybol"
position_abstraction="compass"
position_model="south"/>

</model>

Similar models can be built of (dynamic) workflows
whereby the inputs and outputs of the part operations appear
in a special order as attribute values. But this may become
the topic of a follow-up paper.



6 Hardware Connection

6.1 Reflection

The use of a programming language eases model abstrac-
tion for human programmers. Special tools exist that break
down models given in form of program code into their binary
form, into sequences of0 and1. These are calledMachine
Language, because understood by computers.

Classical programming languages have the linguistical
means to express high-levelKnowledgeas well as low-level
Hardware Control Instructions. The use of such languages
inevitably leads to a mess in program code because both are
mixed up. Unflexible, overly complex systems with nume-
rous interdependencies are the result. Section 3 already cri-
ticised this weakness of traditional programming language
concepts. This work makes the necessary split: Knowledge
getsseparatedfrom hardware control.

Biological Cell Separation is one proof for this theory.
The original cell forwards its configuration information in
form of aDesoxy Ribo Nucleic Acid(DNA) to the new cell.
The new cell uses this knowlege to create new organelles
and to function correctly. Each cell represents a system with
differentHardwarethat it controls but all cells (in one-and-
the-same biological creature) use the same configuration.

Regions of the Human Brain are another example. The
main knowledge is stored in theCerebral Cortex. Other re-
gions more or less just control the exchange of knowledge
through input/ output organs (hardware), for communica-
tion with other biological systems.

6.2 Cybernetics Oriented Interpreter

The CYBOL language described in section 5 is just another
form of storing knowledge. It can therefore also be called a
Knowledge Modelling Language.

Fig. 5. CYBOI as Interface between CYBOL and Hardware

When CYBOL files contain the knowledge that defines
a system, a counterpart is needed to execute that system on
computer hardware. TheCybernetics Oriented Interpreter
(CYBOI) is able to handle this task (figure 5). CYBOI is
written in the C programming language and currently sup-
ports theLinux Operating System(OS) only. It represents,
so to say, the interface between operating instructions of the
computer hardware and system models defined in CYBOL.

CYBOI is responsible for managing any kind of hard-
ware communication, that is input, output, memory access
and processor instruction calls. CYBOI Signals can be as-
signed priorities, a language (protocol) to communicate with
other systems and they are processed by one single loop
(figure 6). Also, there is only one single container structure
which CYBOI uses to dynamically store knowledge. It such
avoids the known problems with container inheritance [6].
Following Euclidian Geometry, multi-dimensionalModels
consist of maps; two-dimensionalMapsconsist of arrays;
one-dimensionalArrays represent and manage an area in
the computer memory.

Fig. 6. CYBOI Model Container and Signal Loop

The more hardware driving functionality CYBOI imple-
ments, the more it develops towards an operating system –
with one difference to current OS: It is free of any configu-
ration information but knows how tohandleknowledge.

7 Related Work

There are a number of efforts that go into a similar direc-
tion like CYBOP [7]. Basically, every application that stores
configuration data (colours, fonts) does use some kind of
knowledge model for the file or database to save in. How-
ever, they all are limited to their corresponding field. What
this paper proposes is, in short, to store complete systems
in special configuration files in CYBOL format. CYBOP
wants to show an overall approach and provide the means
(CYBOL/ CYBOI) to build abstract software models for
any possible application layer, may it be a domain, user in-
terface, workflow, data transfer object or storage.



The two projects mentioned following do related work,
with focus on the medical domain.

Open Infrastructure for Outcomes (OIO) [8] is a Web-
based data management system that uses forms (and work-
flows) which are defined in XML. Its most critical point is
that OIO forms mix user interface with domain model data.
Moreover, it misses a clear theory behind and does not dis-
tinguish static and dynamic models.

Open Electronic Health Record (OpenEHR) [9] is a stan-
dardization effort that arose from a European initiative. Its
Dual Model Approachalso influenced CYBOP. The project’s
main aim is the creation of knowledge templates (which it
calls Archetypes), for which an ownArchetype Definition
Language(ADL) was defined. A lot of emphasis is placed
on constraint inclusion, to ensure correct models. However,
OpenEHR’s model concepts are not based on abstraction as
it happens in the human mind. They do not clearly distin-
guish between constraints, positions and the actual model
information. There is no facility for translating between arche-
types [2]. It offers only static archetype models, no dynamic
workflows. ADL seems overly complex and difficult to un-
derstand. The whole project still lacks implementation ex-
periences and practical proof of workability.

8 Summary

This paper means that wildDependenciesare a major rea-
son for error-prone, unstable, unflexible, unmaintainable soft-
ware systems. Two facts causing such dependencies are the
Bundlingof static and dynamic properties by object-oriented
languages and theMix of knowledge and hardware con-
trol in traditional programming languages. This informa-
tion mix additionally forces software development projects
to run through a course of different abstraction steps which
would not differ if one common knowledge abstraction were
used.

As solution to the above’s problems, this document sug-
gests to build software systems after the concepts ofHuman
Thinking. The approach, named CYBOP, such follows the
recommendations of the science ofCyberneticsand its spe-
cializationBionics, whereby biological principles should be
applied to the study and design of engineering systems. An
abstract model as formed in the human mind represents an
Item, CategoryandCompound, at the same time. Additio-
nally, it containsMeta Informationabout its parts. This in-
formation often corresponds to physical dimensions and de-
termines whether the model is an abstraction ofstatic or
dynamicreal-world aspects.

The introducedCYBOLlanguage has the semantics to
express knowledge models as used by human thinking. It
allows to create complete application systems. Its syntax
is based onXML which results in absolutely platform- in-
dependent system definitions. CYBOL files get interpreted
by theCYBOI interpreter and can be changed at runtime.
CYBOI manages all hardware access. It concentrates model

instances and signal handling in one place and such avoids
memory leaks and endless loops.

CYBOL models could be displayed graphically, using
special design tools. But theirformal definitionalso allows
them to be used as main abstraction throughout all phases in
a software project’s lifetime. Analysts and experts can start
their work by creating rudimentary CYBOL models (defin-
ing static structures and dynamic processes) which software
designers can later complete and check for correctness. The
implementation phase becomes superfluous at all: CYBOL
models already represent the system to be built, no further
code is needed! It is hard to imagine the amount of saved
time and costs for software projects. Even better: Experts
are placed in a position to, themselves, actively help creat-
ing systems.

References

1. Remigiusz Bierzanek and Janusz Symonides.Prawo
Miedzynarodowe Publiczne (citing S. E. Nahlik).
Wydawnictwa Prawnicze (PWN), Warszawa, 5 edition,
1999. http://www.wp-pwn.com.pl.

2. Minoru Development. Open health mailing list, 1999-2004.
¡openhealth-list@minoru-development.com¿.

3. Christian Heller, Jens Bohl, Torsten Kunze, and Ilka Philip-
pow. A flexible software architecture for presentation layers
demonstrated on medical documentation with episodes and
inclusion of topological report.Journal of Free and Open
Source Medical Computing (JOSMC), 1(26.06.2003):Article
1, June 2003. http://www.josmc.net.

4. Christian Heller, Torsten Kunze, Jens Bohl, and Ilka Philip-
pow. A new concept for system communication.Ontology
Workshop at OOPSLA Conference, October 2003. http://swt-
www.informatik.uni-hamburg.de/conferences/oopsla2003-
workshop-position-papers.html.

5. Ludwig Jaeger. Linguistik: Ohne sprache undenkbar. In
Gehirn & Geist, volume 2, pages 36–42. Spektrum der Wis-
senschaft, http://www.spektrum.de, 2003. http://www.gehirn-
und-geist.de.

6. Peter Norvig. The java iaq: Infrequently answered questions.
http://www.norvig.com/java-iaq.html.

7. CYBOP Project. Cybernetics oriented programming (cybop),
2002-2004. http://www.cybop.net.

8. OIO Project. Open infrastructure for outcomes (oio), 2000-
2004. http://www.txoutcome.org.

9. OpenEHR Project. Open electronic health record (openehr),
formerly good electronic/ european health record (gehr),
2000-2004. http://www.openehr.org.

10. Peter Ripota. Das universum hat ein bewusstsein! InP.M.
Magazin, pages 21–25. Hans-Hermann Sprado, September
2003. http://www.pm-magazin.de.

11. Christoph Schoenhofer. Unternehmensberatung: Die neuro-
manager. InGehirn & Geist, volume 2, pages 74–75.
Spektrum der Wissenschaft, http://www.spektrum.de, 2003.
http://www.gehirn-und-geist.de.

12. John F. Sowa.Knowledge Representation: Logical, Philo-
sophical, and Computational Foundations. Brooks/Cole,
Thomson Learning, Pacific Grove, 1997.

13. P. Stoerig. Hirnforschung – visuelle wahrnehmung: Blind-
sehen. In Gehirn & Geist, volume 2, pages 76–80.
Spektrum der Wissenschaft, http://www.spektrum.de, 2003.
http://www.gehirn-und-geist.de.


