
A new Concept for System Communication

Christian Heller<christian.heller@tu-ilmenau.de>, Torsten Kunze<info@torstenkunze.de>,
Jens Bohl<info@jens-bohl.de>, Ilka Philippow<ilka.philippow@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

http://www.tu-ilmenau.de, fon: +49-(0)3677-69-1230, fax: +49-(0)3677-69-1220

Abstract

This paper introduces an improved architecture for sys-
tem communication. The architecture is based on the Trans-
lator pattern which is derived from existing design pat-
terns. Hierarchical abstraction and ontologies are used
to combine these basic patterns and to merge their advan-
tages into one, domain- and language-independent software
framework.
This conceptual framework, called Cybernetics Oriented
Programming (CYBOP), has its roots in the layered ar-
chitecture pattern and is characterized by flexibility and
extensibility. It helps to structure software as well as to
keep it maintainable. A Component Lifecycle ensures the
proper startup and shutdown of any systems built on top
of CYBOP.
Great influence was exerted by the biological model of in-
formation processing in the human brain. It provided the
idea of a seemless integration of communication paradigms
and persistence mechanisms. Overcoming the classical scheme
of thinking in terms of Domain, Frontend, Backend and
Communication, this architecture treats them all similar,
as passive data models which can be translated into each
other – as opposed to the classical approach that unnec-
essarily complicates their design.
The practical proof of this combined architectural approach
was accomplished within an (ongoing) effort to design
and develop a module called ReForm, for the Open Source
Software (OSS) project Res Medicinae. The main task for
this module is to provide a user interface for printing med-
ical forms. It was used to examine the communication be-
tween modules and to find a structure for effective imple-
mentation and easy expansion.
Keywords.CYBOP, Design Pattern, Hierarchy, Ontology,
Translator, Assembler, Mapper, Communication, Backend,
Persistence, Frontend, User Interface, Res Medicinae

1 Introduction

1.1 Problem Analysis

Quality of software is often defined by its maintainabil-
ity, extensibility and flexibility. In the past decades,Pro-

cedural (Structured) Programming, thenObject Oriented
Programming(OOP) and more recentlyComponent Ori-
ented Programming(COP) provided a number of help-
ful paradigms to help to achieve these goals. A major im-
provement was the extension of dataTypeto Class, own-
ing inheritable properties and methods.
But still, design problems are evident, in nearly every software
product. It is thefalse combination and groupingof classes
that still keeps us away from clear and effective solutions.
As a system grows, the interdependencies between its sin-
gle parts grow with. Why does this happen? Simply be-
cause a clear architecture is missing. Even if develop-
ers really try to follow a such – on some point in the
software’s life, compromises have to be made due to un-
foreseen requirements and dependencies:

- Interfacesare used to realize new properties bymul-
tiple inheritance(Mix-In)

- Static manager objectsaccessible by any other ob-
jects in a system are introduced

- New software layers are plugged in withvarying mech-
anisms

- Redundant codeneeds to be written (per copy & paste),
to avoid too many unwanted interdependencies

Can this be avoided at all and if, then how? The au-
thor’s opinion isyesand the new concept introduced in
this document can hopefully contribute a small part to
this, and show ways out of the misery.

1.2 Architecture Context

To stepwise approach a solution, the problem needs to be
placed in the right context, that is thePhysicalas well as
Logical System Architecture.

Figure 1 shows a typicalInformation Technology(IT)
environment (physical architecture). There is a centralAp-
plication Serverthat is accessed byApplication Clientsor
overWeb. In addition, it can be addressed byLocal Pro-
cesses(running on the same machine) and, most impor-
tantly, Human Userswho control the system. The appli-
cation server itself can become a client by interacting with
aDatabase Systemor otherRemote Servers.



Fig. 1. Information Technology Environment

Each of these kinds of communication makes use of its
own interaction mechanism. This paper will concentrate
on the three (plus one) most important ones:

- Database (Backend)
- Remote Server
- Human User (Frontend)
- Business Knowledge (Domain Modelin the Applica-

tion Server itself)

A system to be capable of interacting via all of the
above-mentioned kinds, needs to have implemented the
corresponding mechanisms in its software (logical archi-
tecture). Figure 2 shows a possible inner software struc-
ture of a modular (layered) system implementation.

Fig. 2. Inner Software Structure

1.3 Design Pattern and Framework

One well-known way to create a layered system with clear
architecture and only few interdependencies is the use of
Software Patterns(often divided intoDesign-, Architecture-
and other patterns). They help recognizing recurring struc-
tures for application on similar problems. Another, closely
related technique areFrameworks. They can help prevent
code duplication and development efforts. Both concepts
– frameworks and patterns – depend on each other and

provide higher flexibility for software components [Pre94].
This paper is not about frameworks but its solutions are
extracted and used in one calledCybernetics Oriented Pro-
gramming(CYBOP) [Pro04b]. Its main concept is based
on the hierarchical structure of the universe [CH03]. This
very simple idea can perfectly be mapped on software sys-
tems.

1.4 Document Structure

In the course of this paper, basic design patterns are in-
troduced in section 2 and placed into the greater architec-
ture context in section 4. Section 3 provides some knowl-
edge to achieve this, that is to apply hierarchies to obtain
ontologies which finally help to combine and merge the
design patterns. The biological considerations of section
5 greatly contribute to the resulting architectural pattern
Translator which gets introduced in the context of sys-
tem communication, in section 6. Practical proof is given
in section 7 which briefly describes theReFormsoftware
module, before the final summary in section 8.

2 Basic Patterns

2.1 Data Mapper

Originally, the communication approach of CYBOP was
based on theData Mapperpattern (figure 3).

DomainModel Finder-Interfaces

Mapper

Database

Fig. 3. Data Mapper Design Pattern [ea02]

It is part of Martin Fowler’s pattern collection called
Enterprise Application Architecture[ea02]. The most im-
portant idea of this pattern is to abolish the interdepen-
dency of domain (knowledge) model and database (per-
sistence).
The arrows in figure 3 indicate the direction of depen-
dency. Each domain model class knows its appropriate



persistence finder interface but does not know their im-
plementation, i.e. how data are actually retrieved from the
database. The data mapper implementation is part of the
mapping package that implements all finders and maps
all data of the received result set to the special attributes
of the domain model objects. There is no need for the
domain model to know where the database is located or
how to get the data – and also not how to map the entity-
relationship model data.
If all these things are done by the corresponding data map-
pers now, why shouldn’t it be possible to get such a map-
ping package for persistence media of any kind, no mat-
ter which communication paradigm (File Stream, JDBC
with SQL) is used? Users would have a number of per-
sistence mechanisms to dynamically choose from; devel-
opers would not have to implement the same mechanisms
again and again for each new module (application) – lead-
ing to clearer code with greatly reduced size.
This functional code separation would make it easy to de-
velop a complicated domain model and update it later, if
necessary. The data mapper package could contain spe-
cial parts for local storage in a file system, in various file
formats such as XML, CSV, TXT etc. (whether it makes
sense or not to store domain data in a pure text file), for a
number of (relational) databases (PostgreSQL, MySQL)
and so on. Each of those specialised parts would know
how to communicate with its appropriate persistence medium
and only with it. They would all include a specialised
mapper class, calledTranslator in CYBOP, which trans-
lates the data from the domain model to the model of the
corresponding persistence mechanism.

2.2 Data Transfer Object

It is a well-known fact that many small requests between
two processes, and even more between two hosts in a net-
work need a lot of time. The local machine with two pro-
cesses has to permanently exchange the program context
and the network has a lot of transfers. For each request,
there is at least a necessity of two transfers – the question
of the client and the answer of the server.
Transfer-methods are often expected to deliver common
data such as a Person’s address, i.e. surname, first name,
street, zip-code, town etc. These information is best re-
trieved by only one transfer-call. That way, the client has
to wait only once for a server response and the server does
not get too many single tasks. In the address-example, all
address data would best be packaged together and sent
back to the client.

And that is exactly what the Data Transfer Object pat-
tern (figure 4) proposes a solution for: A centralAssem-
bler class takes all common data of the server’s domain
model object and assembles them together into a special
object calledData Transfer Object(DTO) which is a flat
data structure. The server will then send this DTO over

DomainObject

+createDTO(in do : DomainObject)
+createDomainObject(in dto : DataTransferObject)
+updateDomainObject(in dto : DataTransferObject)

Assembler

+serialize()
+deserialize()

DataTransferObject

Fig. 4. Data Transfer Object Design Pattern [ea02]

network to the client. On the client’s side, a similar as-
sembler takes the DTO, finds out all received data and
maps (disassembles) them to the client’s domain model.
In that manner, a DTO is able to drastically improve the
performance in communications.
Comparing with the Data Mapper from chapter 2.1, the
assembler’s task of translating between data models seems
quite similar, if not the same. Hence, why shouldn’t it be
possible for inter-system communications over network to
use aTranslatorsimilar to the one for persistence? This
translator could provide special parts for assembling dif-
ferent types of DTOs, independent from which communi-
cation protocol/language (Sockets, RMI, JMS, CORBA,
SOAP etc.) is used.

2.3 Model View Controller

After having had a closer look at common design pat-
terns for persistence and communication, this section fi-
nally considers the so calledFrontendof an application
which is mostly realized in form of a graphical user inter-
face.
Nowadays, the well-knownModel View Controllerpat-
tern (figure 5) is used by nearly all standard applications.
Its principle is to have theModel holding domain data,
theViewaccessing and displaying these data and theCon-
troller providing the workflow of the application by han-
dling any signals (events/ actions) appearing on the view.

Controller

ModelView

Fig. 5. Model View Controller Design Pattern



Since the view (graphical user interface) serves as means
of communication between a software system (applica-
tion) and its user (Human Being as system), the view is in
fact just another type of communication model that should
be assembled by a special translator.
Because there are many ways in which domain data can
be displayed, different user interfaces can exist. Each of
them has to have its very own translator item that knows
how to map data both ways, from the domain model to the
user interface model and vice-versa.

3 Hierarchy and Ontology

Section 2 explained three design patterns that are widely
used in software architectures. It has shown similarities
between them and raised the question if they could pos-
sibly be merged into just one pattern, calledTranslator,
what will be described in section 4. Yet before, this sec-
tion will demonstrate how the principle ofHierarchymay
be applied to obtain anOntology.

3.1 Association Elimination

An Electronic Health Record(EHR) will serve as exam-
ple domain model whose class structure is shown in part
in figure 6. It consists of numerous parts whereof at least
two will be of type Addressand Problem, respectively.
Following theEpisode-based EHRrecommendation [HW98],
Problemmay consist ofSubjectiveandObjective. All these
associations between classes are needed to navigate through
the domain model.

Fig. 6. Parent- eliminate Child Associations

A frequent design decision in object oriented program-
ming is to sum up common properties of sub classes by
introducing a common super class. It is not only prop-
erties, but also theGranularity of objects that can lead

to the creation of a super class. The OpenEHR project
[Pro04a] suggests to let the above-mentioned classes in-
herit from the more coarse-grained super classesRecord,
Unit, Headingand others.
Whichever reason – once the super classes are there, they
should be associated similarly to their sub classes, that is
in the same direction, using unidirectional dependencies.
Afterwards, all associations between sub classes become
superfluous as every sub class can reach its sibling across
their parent classes’ association (figure 6).
Here a short Java code example for how theHealthRecord
may retrieve a reference toAddress:

Address a = (Address) get("address");

HealthRecordinherits thegetmethod from its super class
Record. Recordholds many instances of typeUnit and
differing sub types. Theget method delivers back an ob-
ject that still needs to be down-casted to the expected sub
typeAddress.
The definition of classes, their dependencies (defined by
associations) and granularities (defined by inheritance) in
a software system results in several layers of classes of
common granularity, as shown in figure 7. These layers
are often calledOntological Levelas they form anOntol-
ogy(see section 3.2).

Fig. 7. Ontological Levels and Item Container

Continuing the structure process of introducing more
and more common, coarse-grained or fine-grained super
classes, the development culminates in one top-most su-
per class of all other classes in the system, which this pa-
per callsItem. It is as general as thejava.lang.Objectclass
for the Java class library, only that it additionally repre-
sents a container that can store objects of any type, as ex-
plained in [CH03]. In other words,Itemprovides the meta
functionality of a container behaviour toall other classes.



3.2 Ontology

Manifold definitions of the wordOntology exist. They
come from philosophy, metaphysics, information technol-
ogy and others – too many to list here. This document
uses its own, adapted definition and considers an ontol-
ogy to bea strict hierarchy of abstract items, organized in
levels of growing granularity, that are solely unidirection-
ally related. It such represents a systematic description of
complex domain contexts.

Fig. 8. Electronic Health Record Ontology

Figure 8 shows one possible ontology of an electronic
health record, as described in the previous section.

4 Logical Architecture

This section will sort the design patterns of section 2 into
the layered architecture of a standard application. After-
wards, the hierarchical principles of section 3 are applied
to simplify and merge the design patterns which will lead
to an ontology.

Fig. 9. Layered Architecture

A state-of-the-art software system consists of a lay-
ered architecture similar to the one shown in figure 9.

The startableController process creates the whole appli-
cation tree, to which belong theView (as user interface),
theModel(providing data to the view and as facade to re-
mote servers) and theDomainwith its databaseMapper
layer.
It is not difficult to figure out where the basic patterns of
section 2 fit in here (figure 10): TheModel View Con-
troller pattern determines the classes to interact with a
human user via theView (sometimes calledPresentation
Layer); theData Mapperpattern provides necessary classes
and anEntity Relationship Model(ERM) to connect to a
persistence medium such as a database; theData Transfer
Object(DTO) pattern, finally, serves as means of commu-
nication with remote servers.

Fig. 10.Layered Architecture with Basic Patterns

For all three kinds of communication, there is a:

- System (HumanUser, DataBase, RemoteServer)
- Model (View, ERM, DTO)
- Translator (ViewAssembler, Mapper, DTOAssembler)

Realizing this, it is easy to create ontological layers by
adding one common parent class for systems, models and
translators each, which leads to a much clearer architec-
ture (figure 11). The common properties of all sub classes
are merged into their corresponding super class.

Fig. 11.Layered Architecture with merged Patterns



5 Biological Reflections

The previous sections have shown how existing patterns
for communication can be merged into one common sys-
tem architecture. All of these design patterns suggest their
very own communication paradigm which cannot be used
anymore in the new, mergedTranslatorarchitecture. There-
fore, a new way for system interaction needs to be found.

Fig. 12.Human Being as System of Models (Brain)

Following the CYBOP approach, nature – in our case
the Human body – will be considered next. Humans have
organs responsible for information input and output (fig-
ure 12). In between input and output, the information is
processed by the brain that contains a specific abstract
model of the surrounding real world. The human brain
consists of several regions, each being responsible for a
special task, such as the optical region for seeing or the
cerebral cortex for actual information processing which
possibly leads to awareness.

The following example demonstrates a typical infor-
mation (signal) processing procedure (technical names were
used instead of biological ones in figure 13; the terms
MapperandAssemblerare converted and merged into the
termTranslator):
One humanSystemwants to send another humanSystem
a message. It decides for an acousticalSignal, formulates
a sentence and talks to the other humanSystem(handle
method). The other human receives theSignalacross its
ear organ (Keyboard, Mouse, Network). TheSignalis then
forwarded to the receiver’s brain (Controller) where a spe-
cial Regionresponsible for acoustics (Translator) trans-
lates (decodemethod) the data (DataTransferModel) con-
tained in theSignaland sorts them into the human’s ab-
stract model of the surrounding real world (DomainModel
or KnowledgeModel, respectively). Processing of the sig-
nal happens in the cerebral cortex of the brain (Proces-
sor). If the addressed listener wants to send an answerSig-
nal, it may do so by triggering a muscle reaction. For this
to happen, the motoric brain region (Translator) needs to

Fig. 13.Signal Processing as UML Sequence Diagram

translate (encodemethod) abstract model data (Domain-
Model) into a special communication model (UserInter-
faceModel) for the answer signal. Finally, the answer sig-
nal will be sent as muscle action (data display onScreen).

6 System Models

So far, the paper has elaborated on the statics (section 4)
as well as the dynamic side (section 5) of the proposed
Translatorpattern. This section will finally show the over-
all results in a number of architecture diagrams.

6.1 Translator Pattern

As could be seen in section 5, there is always aTranslator
that is able to map domain model data to communication
model data (encodemethod) and back (decodemethod).
Depending on which communication medium is used, dif-
ferent translators need to be applied (figure 14).

Fig. 14.Translator Classes in a UML Class Diagram



Every system has exactly one domain model but com-
munication models of arbitrary type can be added anytime
(figure 15). Every translator knows only how to translate
between the domain model and a special communication
model. Direct translation between communication models
is forbidden as it would break the flexibility of the whole
framework. In other words, translations always have to be
donevia the domain model.

Domain Model

Persistence Model

Domain

UserInterfaceModel

Translator
(Layer PerCom)

Communication Model

Fig. 15.Translator accessing various Models

6.2 Ontology Framework

When placing the translators of figure 14 into the greater
system architecture context, aSystem Ontologyas shown
in figure 16 may be retrieved. It contains the newTrans-
lator as sub class ofRegion, input/ output devices as sub
class ofBlock, Module(Application) andUseras sub class
of Systemand further parts which are not the topic of this
paper. For the ease of understanding, the biological coun-
terparts have been added on the right side of the figure.
Specialized translators may be derived as sub class of the
one shown in figure 16.

Fig. 16.System Ontology

To complete the list of important ontology models,
figure 17 gives an overview of language-integrated types
(commonly calledPrimitives). And as a matter of fact:

All typecasted programming languages already contain an
Ontology! These primitives represent the lowest layer in
an ontology or in other words, the last level of abstraction
in software. That is also whereTerminologies(that are
mostly mentioned in conjunction with ontologies) come
in. Basically, these are sorted collections of terms (strings)
but not further elaborated here.

Fig. 17.Basic (Language) Ontology

Putting the three ontologiesBasic, Model and Sys-
tem that were introduced in this paper together, results
in the CYBOP architecture of figure 18. All ontologies
base on theLanguage Ontology. A system built after the
System Ontologymodel (in this paper the example of an
Electronic Health Recordapplication) may access one ore
moreModel Ontologies(in the example the health record
domain model). All dependencies are unidirectional.

Fig. 18.CYBOP Ontology Framework

6.3 Consistency

The described models are highly flexible and extensible
and absolutely transparent to the user (developer). S/he
will not know whether the current communication is with
the local file system, a database or a remote process on
another machine.



However, this transparency causes a number of problems.
Surely, the most common question is how to ensure con-
sistency, security and minimum redundance? The follow-
ing two paragraphs give an answer to the first part of this
question – consistency and uniqueness of data sets. Max-
imizing security and minimizing redundancy have to be
analysed in future works.

Object ID (OID) Most database systems provide an own
algorithm to generate primary keys for the tables. But the
applications that use our communication architecture shall
also be able to work if a database server is not reachable,
e.g. due to a network failure. Thats why the keys are gen-
erated locally, by each application. Based on the assump-
tion that every host in a network has a network card, it
thereby has a unique internet address. This number is con-
catinated with an exact time stamp (nanoseconds). That is
why the OID is unique in the global network and unique
in time.
The proposed approach uses the OID as file name for local
storage and the same OID as primary key in the main table
of the database. Therewith, both models can be mapped
to each other. Of course, it is necessary to avoid overwrit-
ing of new data in the database. If, for example, a net-
work connection is cut and a little later, one wants to get
data from the local files and write them up in the restored
central database, it has to be made sure that nobody else
has modified the data during the offline-time. That is why
there is another technique to ensure this – the time stamp.

Time Stamp Most database developers will know this
technique. Each table has a separate column for storing
the time at which the data were written into this table. If
someone requests information from the database, the time
stamp is delivered as well. After modifying the data, they
have to be written back into the database. At this time,
both timestamps (the one in the database table and the one
delivered before) are compared. If there is a difference, the
data were modified by another user. Then, one has to care
about the update without overwriting the new data in the
table.

7 Physical Architecture

This section wants to give practical proof of the theoreti-
cal models described before. It first introduces the project
Res Medicinaein whose frame the software was written.
Afterwards, two solutions of a physical architecture,Two-
Tier andThree-Tierare explained.

7.1 Res Medicinae

The practical background for the application of CYBOP
is Res Medicinae[pro04c]. A modern clinical informa-
tion system is the aim of all efforts in this project. In the

future, it shall serve medical documentation, laboratory
data, billing etc.
Res Medicinaeis separated into single modules solving
different tasks. One module in which the CYBOP com-
munication concepts were applied isReForm(figure 19).
It offers a medical form that can be filled in and printed
out. Since one of the main reasons to implement this mod-
ule was the testing and proof of the new persistence and
communication concepts, it includes a dialog for choosing
the communication protocol or persistence mechanism,
respectively. This is the only remaining part where users
have to care about the underlaying techniques. They also
have to decide whether to use the local file system viaEx-
tensible Markup Language(XML) format or to store the
data in a central database. In the future, an XML file for-
mat may as well be used for remote communication, e.g.
via Simple Object Access Protocol(SOAP).
Because of the component-based design ofRes Medicinae,
it is possible to start more than one instance ofReFormat
the same time. In this way, the data exchange between
modules can be tested. A moduleX looks for another reg-
istered moduleY at the naming service ofRemote Method
Invocation(RMI), Common Object Request Broker Archi-
tecture (CORBA) or some other.X gets the address of
the remote serviceY (depending on the communication
mechanism). The stub and skeleton ofX andY marshal,
send and unmarshal the data for further working.

Fig. 19.ReForm Module



7.2 Two Tier Architecture

The proposed CYBOP communication architecture is cur-
rently implemented in form of aTwo-Tierarchitecture (fig-
ure 20).

Client

Application B

JMS, RMI, CORBA

Server

DomainModel

PersistenceTranslator

Database

Database
management system

SQL-PackageDataTransferTranslator

DTO

Local host

Client

Application A

Server

DomainModel

PersistenceTranslator

SQL-PackageDataTransferTranslator

DTO

JDBC

Remote server

Fig. 20.Two Tier Architecture

It shows how two autarchic components (Application
A and B) intercommunicate and save their domain data in
different ways. Each component fulfills a special task and
works as a client as well as a server. One can recognize
the two patternsDataMapperandDTO.
If a client requests some data from another component, the
central objectDataTransferTranslatorcollects all needed
information from theDomainModeland encodes (packs)
them into oneDataTransferModel. Now, theServerob-
ject can send thisDTO back to the requesting client com-
ponent. On the other side of the wire, theClient object
receives theDTO, aDataTransferTranslatordecodes (un-
packs) the data and writes them into theDomainModel.
In this example, the two components are located on the
same host. It is also possible to distribute them. Therefore,
each component is also able to communicate with other
components that are situated somewhere in the network.
The arrows in applications indicate the dependencies be-
tween the single architectural elements, whereas the out-
side arrows show the communication between components
and database server.
All data storing operations are hidden in a specialPersis-
tenceTranslatorlike the one shown in figure 20, on the
example of a database. The SQL statements were placed
in a separate package. If there is the need for getting infor-
mation from a database, the translator uses the statements
of theSQL Packageand maps data of the result set to the
DomainModel.

7.3 Three Tier Architecture

To provide a more comfortable structure than the typical
Two-Tierarchitecture as shown in section 7.2, there is the
necessity of aThree-or Multi-Tier Architecture. If, for
example, the location of the database server was changed
then, in aTwo-Tierarchitecture, all clients would have to
be updated. Figure 21 makes a proposition to solve this
problem.

Client

Application B

JMS

Server

DomainModel

ERTranslator

Data Translator for database

RMI,
CORBA

Database

Database
management system

SQL-Package TranslatorServerDTO

DataTransferTranslator DTO

Client

Application A

Server

DomainModel

DataTransferTranslator DTO

JDBC

Local host

Remote server 1

Remote server 2

Fig. 21.Three Tier Architecture

8 Summary

Major research objectives are to find concepts and princi-
ples to increase the reusability of software, their archi-
tectures as well as the resulting code. The aim of this
work was to find an architecture that simplifies and unifies
the implementation of any kind of communication mech-
anism.
Persistence, remote communication and user interface mech-
anisms have common properties. Classical system archi-
tectures treat them asBackend, Data TransferandFron-
tendand use different methods and design patterns (DataMap-
per, DataTransferObject, ModelViewController) to imple-
ment them.
This paper proposed to sum up their common properties



and behaviour and to merge them into just one communi-
cation pattern calledTranslator, thereby avoiding redun-
dant parts. The new pattern required a new communica-
tion paradigm and this paper described one that follows
the information processing procedure of the human brain.
Finally, the pattern was integrated into a greater system
context using ontologies. The proposed ontology frame-
work consists of aBasic, a Model and aSystemOntol-
ogy and seems to be a good solution for the implementa-
tion of highly flexible, easily extensible and maintainable
source code. The interdependency of domain data, per-
sistence layer, communication layer and user interface is
abolished.
The time needed to create such an architecture (like in
form of the CYBOP framework) is clearly more than for
the classical way. But once the architecture is there – it can
save a tremendous amount of time when deriving modules
being capable of communicating across various mecha-
nisms at once. Due to its flexibility and low dependencies,
it also ensures that extensions (e.g. new communication
mechanisms) and modifications can be done anytime later
without destroying already existing solutions.

9 Acknowledgements

Our special thanks go to all Enthusiasts of the Open Source
Community who have provided us with a great amount
of knowledge through a comprising code base to build
on. We’d also like to acknowledge the contributors ofRes
Medicinae, especially all medical doctors who supported
us with their analysis work [KH04] and specialised knowl-
edge in our project mailing lists.

References

[CH03] CHRISTIAN HELLER, JENS BOHL, TORSTENKUNZE

ET AL .: Flexible Software Architectures for Presenta-
tion Layers demonstrated on Medical Documentation
with Episodes and Inclusion of Topological Report.
Journal of Free and Open Source Medical Computing
(JOSMC), June 2003. http://www.josmc.net.

[ea02] AL ., MARTIN FOWLER ET: Patterns of Enterprise
Application Architecture (Information Systems Archi-
tecture). Addison-Wesley, Boston, Muenchen, 2001-
2002. http://www.aw.com.

[HW98] HENK WESTERHOF, DUTCH COLLEGE OF GEN-
ERAL PRACTITIONERS, UTRECHT: Episodes of
Care in the New Dutch GP Systems. Primary
Health Care Specialist Group Annual Confer-
ence Proceedings, Cambridge, September 1998.
http://phcsg.ncl.ac.uk/conferences/cambridge1998/westerhof.htm.

[KH04] KARSTEN HILBERT, CHRISTIAN HELLER,
ROLAND COLBERG ET AL.: Analysedoku-
ment zur Erstellung eines Informationssystems
fuer den Einsatz in der Medizin. The Res
Medicinae Free Software Project, 2001-2004.
http://www.resmedicinae.org/model/analysis.

[Pre94] PREE, W.: Meta Patterns – A Means for Capturing the
Essentials of Reusable Object-Oriented Design. Pro-
ceedings of ECOOP ’94, 150–162, 1994.

[Pro04a] PROJECT, OPENEHR: Open Electronic Health
Record (OpenEHR), formerly Good Electronic/
European Health Record (GEHR), 2000-2004.
http://www.openehr.org.

[Pro04b] PROJECT, THE CYBOP: Cybernetics Ori-
ented Programming (CYBOP), 2002-2004.
http://www.cybop.net.

[pro04c] PROJECT, THE RES MEDICINAE: Res Medicinae
– Medical Information System, 1999-2004.
http://www.resmedicinae.org.


