
A flexible Software Architecture for Presentation Layers
demonstrated on Medical Documentation with Episodes

and Inclusion of Topological Report

Christian Heller<christian.heller@tu-ilmenau.de>, Jens Bohl<info@jens-bohl.de>,
Torsten Kunze<info@torstenkunze.de>, Ilka Philippow<ilka.philippow@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

http://www.tu-ilmenau.de, fon: +49-(0)3677-69-1230, fax: +49-(0)3677-69-1220

Abstract

This document describes how existing design patterns
can be combined to merge their advantages into one domain-
independent software framework. This framework, called
Cybernetics Oriented Programming (CYBOP), is charac-
terized by flexibility and extensibility. Further, the concept
of Ontology is used to structure the software architecture
as well as to keep it maintainable. Its hierarchical appear-
ance stems from a core design decision: all framework
classes inherit from one super class Item which represents
a Tree. A Component Lifecycle ensures the proper startup
and shutdown of any systems built on top of CYBOP.
The practical proof of these new concepts was accom-
plished within a diploma work which consisted of design-
ing and developing a module called Record, of the Open
Source Software (OSS) project Res Medicinae. The major
task of this module is to provide a user interface for creat-
ing medical documentation. New structure models such as
Episodes were considered and implemented. In this con-
text, the integration of a graphical tool for Topological
Documentation was highly demanded as well. The tool
allows documentation by help of anatomical images and
the setting of markers for pathological findings.
Keywords.Design Pattern, Framework, Component Life-
cycle, Ontology, CYBOP, Res Medicinae, Episode Based
Documentation, Topological Documentation

1 Introduction

Quality of software is often defined by its maintainabil-
ity, extensibility and flexibility.Object Oriented Program-
ming(OOP) helps to achieve these goals – but it isn’t pos-
sible alone by introducing another programming paradigm.
So, major research objectives are to find concepts and
principles to increase the reusability of software architec-
tures and the resulting code.Frameworksshall prevent
code duplication and development efforts. Recognizing

recurring structures means findingDesign Patternsfor ap-
plication on similar problems. These two concepts – frame-
works and design patterns – depend on each other and pro-
vide higher flexibility for software components [Pre94].
The aim of this work was to find suitable combinations
of design patterns to compose a framework that is char-
acterized by a strict hierarchical architecture. Everything
in universe is organized within a hierarchy of elements –
the human body for example consists of organs, organs
consist of regions, regions consist of cells and so on. This
very simple idea can also be mapped on software architec-
tures – and basically, this is what this document is about.
What kind of techniques to realize such a concept of strict
hierarchy does software engineering provide? The follow-
ing chapters first introduce common design patterns and
the lifecycle of components as templates for own ideas
and then show how the resulting frameworkCybernetics
Oriented Programming(CYBOP) [cyb04] is designed.

2 Design Principles

2.1 Essential Design Patterns

Design patterns [EG95] are elements of reusable software.
They can be used for solving recurrent design problems
and are recommendations on how to build software in an
elegant way. With the help of these patterns, software shall
be more extensible, flexible and easy to maintain with re-
spect to future enhancements. The following patterns are
essential within CYBOP.

Composite This design pattern (figure 1) allows creating
tree-like object structures. One object is child of another
object and has exactly one parent. This pattern is often
used to realizeWhole-Partrelations: one object isPart of
another one.

+operation()
+add(in Component)
+remove(in Component)

Component

+operation()

Leaf

+operation()
+add(in Component)
+remove(in Component)

Composite

Client

* *

1

*

Fig. 1. Composite Pattern

Layers With the help of this pattern, software can be or-
ganized in horizontal layers (figure 2). Modules and ap-
plications can be separated into logical levels, whereby
these levels should be as independent from each other as
possible, to ensure a high substitutability.

Layer 2

Layer 1

Layer 3

Fig. 2. Layer Pattern

Chain Of Responsibility Messages initiated by a partic-
ular object can be sent over a chain of instances to the
receiving object (figure 3). So, either the message will be
transmitted over a bunch of objects or evaluated immedi-
ately by the target object.

Object 1

Object 2

Object 3

Fig. 3. Chain Of Responsibility Pattern

Model-View-Controller Dividing the presentation lay-
ers into the logical componentsModel, View and Con-
troller, is a very approved way for designing software for
user interfaces. The model encapsulates the data presented
by the view and manipulated by the controller (figure 4).

Controller

Model View

Fig. 4. Model-View-Controller Pattern

Hierarchical Model-View-Controller The Hierarchical
Model-View-Controller [JC00] combines the essential de-
sign patternsComposite, LayersandChain of Responsi-
bility into one conceptual architecture (figure 5). This ar-
chitecture divides the presentation layer into hierarchical
sections containingMVC-Triads. The triads convention-
ally consist of model, view and controller parts. Triads
communicate with each other by relating over their con-
troller object.
Here is a short explanation of this concept, using a practi-
cal example: The upper-most triad could represent a dia-
log and the middle one a container such as a panel. In this
container, a third triad – for example a button – could be
held.

Controller

Model View

Controller

Model View

Controller

Model View

Tier n - 2

Tier n - 1

Tier n

Fig. 5. Hierarchical Model-View-Controller Pattern

2.2 Component Lifecycle

EachComponentlives in a system that is responsible for
the component’s creation, destruction etc. When talking
about components, this article sticks to the definition of
Apache-Jakarta-Avalon [jak02], which considers compo-
nents to bea passive entity that performs a specific role.
A component has a number of methods which need to be
called in a certain order. The order of method calls is what
is known asComponent Lifecycle. An outside, active en-
tity is responsible for calling the lifecycle methods in the
right order. In other words, such an entity orComponent
Containercan control and use the component. The Avalon
documentation [jak02] says:

It is up to each container to indicate which
lifecycle methods it will honor. This should be
clearly documented together with the description
of the container.

3 An Extended Component Lifecycle

The CYBOP lifecycle of components is an extension of
the lifecycle idea of Apache – basically the same idea but
another background and realization.
All Whole-Part associationsbetween objects were orga-
nized under the rules of the component lifecycle. The re-
lations were created and destroyed in a sequence of life-
cycle steps. These steps are realized as method calls on
the components (figure 6).

Component exists

Component
configurated

Component
does not

exist

 new

initialize
globalize

destroy
deglobalize

Component
initialized

link

unlinkfinalize

Component
ready for

use

operation 1
operation 2
operation 3

...

Fig. 6. State Diagram of CYBOB’s Component Lifecycle

Contrary to Apache’s lifecycle, this one introduces a
globalizemethod by which global parameters can be for-
warded throughout the whole framework. Static methods
or managerclasses such become superfluous. Analogous
to the lifecycle of organic cells where the genetic infor-
mation in form of a Desoxyribo Nuklein Acid (DNA) is
shared before separation, the globalize method allows to
forward a configuration object to any new instance.

4 Ontology

An ontology is a catalogue of types that are depending
on each other in hierarchical order. It is a formal specifi-

cation concerning a particular objective. CYBOP consists
of three such ontologies:

– Basic Ontology
– Model Ontology
– System Ontology

Figure 7 shows the model ontology. The layer super
types areRecord , Unit , Heading andDescription .
These classes are super types of all classes in a particular
ontological level.
The right side shows a concrete implementation of the
model ontology – theElectronic Health Record[ope04].
This data structure contains all information concerning
a particular patient. The figure showsProblem types
in level Unit . These consist of episodes containing in-
stances ofPartialContact . In level Heading , the
structural elements of a partial contact can be found –
Subjective , Objective , Assessment andPlan .
Therapeutical issues are placed in levelDescription
– such asMedication with particular dose.

2

1

4

3

Item

Heading

Record

Description

HealthRecord

Objective

BloodPressure

Unit Problem

Model - Ontology Beispiel

1

*

1
*

1

1

Fig. 7. Model Ontology

As shown, the concept of ontology can be used to or-
ganize data structures in a hierarchical order by defining
logical layers with super types.

5 CYBOP

Section 2 introduced essential design patterns that repre-
sent the main structure of the CYBOP framework. Sec-
tion 3 explained the Component Lifecycle and section 4
the well-known idea of ontology. Now these design prin-
ciples and concepts will be combined to comprise their
advantages and to increase the demanded quality charac-
teristics: high flexibility and maintainability.
Structure by Hierarchy– this is the basic idea behind CYBOP.
While this principle has been applied to many domain and
knowledge models, especially in the field ofArtificial In-
telligence(AI), it apparently has not been used for the de-
sign of systems yet.

Let us recall theModel View Controllerdesign pattern
which is used in one or another form by a majority of sys-
tems, today. There is aViewwhich mostly is aGraphical
User Interface(GUI). It consists of for example a frame,
panel, menubar and smaller components which are all part
of the frame’s hierarchy. Then, there is theController. The
Hierarchical MVC pattern suggested to use a controller
hierarchy consisting ofMVC Triads. Finally, there is the
Model. Not only AI systems use aHierarchy to structure
their domain data. The OpenEHR project [ope04] does the
same.
Reflecting these facts, one question is at hand:If View,
Controller and Model ideally have a hierarchical struc-
ture, why not creating whole software systems after this
paradigm?Isn’t every system essentially aTree of ob-
jects?
Extending the concept ofHierarchical Model View Con-
troller to whole software architectures, CYBOP was de-
signed to be the domain-independent backbone for infor-
mation systems of any kind. Originally designed for med-
ical purposes, it should also become usable for insurance,
financial or other standard applications in future.

5.1 Class Item

As shown, tree-like structures can be realized by theCom-
positepattern. In CYBOP, this pattern can be found sim-
plified in classItem (figure 8) which is super type of all
other classes. References, respectively relations to child
elements are held within a hashmap. No attributes are used
except of this hashmap. Every element of the map can be
accessed by a special key value.

+getRoot() : Item
+getParent() : Item
+setParent(in parent : Item)
+getChildren() : HashMap
+setChildren(in children : HashMap)
+...()

-parent : Item
-children : HashMap

Item

java.lang.Object

1

*

Fig. 8. Class Item

But that also means that any particularset - andget -
methods become superfluous. The recommendation to en-
capsulate attributes produces thousands of lines of code

whose usefulness is at least questionnable. In probably
90% of cases, theset andget methods consist of only
one single line accessing an attribute value. Sometimes,
additional lines with an update function for other parts
of the system are added. They are called whenever an at-
tribute value is changed by aset method:

public void setValue(Type v) {

this.value = v;
getUpdateManager().update(this);

}

But this update notification could as well be taken over
by the parent object that was calling theset method on
one of its child objects:

public void method() {

child.setValue(v);
getUpdateManager().update(child);

}

In the end, the responsibility of encapsulation falls to
the super classItem with its access methods, alone. It is
the only remaining container class in the whole frame-
work. No other container classes have to be written ever.
For the issue of sorting children (such as to simulate a
List), other concepts have to be used which are partly un-
clear yet and will not be described further in this paper.
Another advantage of having just one container class is
that the unpredictable behaviour in object oriented lan-
guages, when inheriting a container (hashtable) can be
avoided. Find more details in [Nor].
Finally, there is the issue of security. If a system’s security
manager is forwarded in theglobalize lifecycle method
from object to object, as described in section 3, then it can
be stored as one child of theItemsuper class. Whenever
a child needs to be accessed, a parent’s security manager
can check for permittance.

5.2 Basic Structure

Comprising the design patternsComposite, Layers, and
Chain of Responsibility, the CYBOP framework is com-
parable to a big tree containing objects organized in differ-
ent levels. These levels are determined by a specialSystem
Ontology(as opposed to aKnowledge Ontologylike for
example OpenEHR [ope04]) and might become the topic
of a follow-up paper. Figure 9 shows the object tree and
the different levels of granularity.

6 Record – An EHR Module

The practical background for the application of CYBOP
is Res Medicinae[res04]. A modern clinical information

Layer 1

Layer 2

Layer 3

Root

Child 1

Child 4 Child 5

Child 2

Child 6 Child 7

Child 3

Child 8 Child 9

Fig. 9. Basic Structure

system is the aim of all efforts in this project. In future, it
shall serve medical documentation, archiving, laboratory
work etc.Res Medicinaeis separated into single modules
depending on different tasks.
One of these modules isRecord– an application for doc-
umenting medical information (figure 10). In addition to
new documentation models, it also contains a tool for topo-
logical documentation.

Fig. 10.Screenshot of Record [urb02]

Starting from an overall view of the human body, it
is possible to reach every organ or region of the body in
detail (figure 11).

7 Summary

Software patterns are essential elements of frameworks.
This paper showed how they can be combined to comprise
their advantages and to realize hierarchical structures with
unidirectional dependencies.
These structures can be created and properly destroyed
using the lifecycle of components. In that lifecycle, ob-
ject relations become more transparent and are easier to
control and to maintain. As an extension, this paper intro-

Fig. 11.Excerpt from Topological Structure of Human Skeleton

duced theglobalizemethod by which references to glob-
ally needed objects can be forwarded through a system
which eliminates the need for static methods or objects.
Ontologies can help to model particular domains and to
layer software. Every level of these ontologies has a par-
ticular supertype, whereby these types depend on each
other by inheritance. This concept supports the modelling
and logical separation of software into hierarchical archi-
tectures. The granularity of the ontology (number of on-
tological levels) can be adapted to particular needs.
In the course of this document, it turned out that hierar-
chies are not only ideal for structuring domain knowledge
but also for structuring whole systems (applications). As
essential design decision to take, this paper proposed to
introduce a top-most super class (calledItemhere) which
represents aMapcontainer. Thousands of lines of code in
form of setandgetmethods can such be eliminated which
leads to a tremendous code reduction and improved clar-
ity.
By applying the new concepts introduced in this docu-
ment, the quality of software can hopefully be increased.
The time for building systems might get reduced. The
clear architecture should avoid common confusion as the
systems grow.

8 Acknowledgements

Our special thanks go to all Enthusiasts of the Open Source
Community who have provided us with a great amount
of knowledge through a comprising code base to build
on. We’d also like to acknowledge the contributors ofRes
Medicinae, especially all medical doctors who supported
us with their analysis work [KH04] and specialised knowl-
edge in our project mailing lists. Further on, great thanks
goes to the Urban and Fischer publishing company, for
providing anatomical images from theirSobotta – Atlas
der Anatomie.

References

[cyb04] CYBOP – Cybernetics Oriented Programming.
http://www.cybop.net, 2002-2004.

[EG95] ERICH GAMMA , RICHARD HELM , RALPH JOHNSON

UND JOHN VLISSIDES(GANG OF FOUR): Design Pat-
terns. Elements of reusable object oriented Software.
Addison-Wesley, Bonn, Boston, Muenchen, 1 , 1995.
http://www.aw.com.

[jak02] Apache Jakarta Avalon Framework, Web Server and
Applications. http://jakarta.apache.org, 2002.

[JC00] JASON CAI , RANJIT KAPILA , GAURAV PAL :
HMVC: The layered pattern for developing
strong client tiers. Java World, July 2000.
http://www.javaworld.com/javaworld/jw-07-2000/.

[KH04] KARSTEN HILBERT, CHRISTIAN HELLER, ROLAND

COLBERG ET AL.: Analysedokument zur Erstellung
eines Informationssystems fuer den Einsatz in der
Medizin. http://www.resmedicinae.org/model/analysis,
2001-2004.

[Nor] NORVIG, PETER: The Java IAQ: Infrequently Answered
Questions. http://www.norvig.com/java-iaq.html.

[ope04] OpenEHR – Design Principles Document.
http://www.openehr.org, 2001-2004.

[Pre94] PREE, W.: Meta Patterns – A Means for Capturing the
Essentials of Reusable Object-Oriented Design. Pro-
ceedings of ECOOP ’94, 150–162, 1994.

[res04] Res Medicinae – Medical Information System.
http://www.resmedicinae.org, 1999-2004.

[urb02] Anatomical Images from Sobotta: Atlas der Anatomie,
2002. http://www.urbanfischer.de.

