
An extended Component Lifecycle

Christian Heller
<christian.heller@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

http://www.tu-ilmenau.de, fon: +49-(0)3677-69-1230, fax: +49-(0)3677-69-1220

Abstract. Based on latest achievements in the field ofCom-
ponent Based Design (CBD)andComponent Oriented Program-
ming (COP), this article shows how a component lifecycle can
be extended. The well-knownHierarchical Model View Con-
troller (HMVC) design pattern is considered for the identifica-
tion of the two concernsShowableand LoadableFollowing,
these two concerns are added to a component to demonstrate
the lifecycle extension. The component frameworkResMedLib
is introduced to show how such communication between com-
ponents happens through well-defined interfaces. A summariz-
ing reflection on the pros and cons ofAspectsversusConcerns
of a component will finalize the article.

Keywords. Component Lifecycle, Design Pattern, HMVC,
Concern, Aspect, Res Medicinae, ResMedLib

1 Introduction

By following Component Based Design (CBD)rules, software
projects try to integrate most diverse systems into one en-
vironment. Although the systems should ideally useCom-
ponent Oriented Programming (COP)for the implemen-
tation of their components, this is not a must. Legacy sys-
tems can be encapsulated as well [Bro00], acting as one
component to the outside environment. In practice, one
cannot use COP without first designing with components
in mind. A typical component oriented development pro-
cess is displayed in Figure 1.

Each component lives in a system that is responsible
for the component’s creation, destruction etc. This is to be
the topic of this article. What will not be considered, is the
communication between remote components living in dif-
ferent systems (RMI, CORBA, SOAP) [blu] or processes
(JMS).
When talking about components, this article sticks to the
definition of [jak02] which considers components to be
”a passive entity that performs a specific role”. This is op-
posed to active components likeAgentsare. For each role,
its Interfacehas to be specified to the rest of the system as
shown in Figure 2.

TheAvalonproject [jak02] writes on to this:

Fig. 1. Component Oriented Software Development.

Fig. 2. Communication between Components.

”... the interface is not enough. There are spe-
cific contracts that one must define and keep in
mind when specifying the interfaces. In other words,
what users of the component must provide, and
what the component produces. When the inter-
face and contract are defined, one can start to
work on the implementation.”

As can be seen, there are other concerns besides the com-
ponent’s role (Figure 3). In most cases, these concerns
belong to a contract that is defined by the surrounding
Framework.



Fig. 3. Role and Contract Concerns.

In some way,Concernsare quite similar toAspects.
In fact, aspects also provide various outside views (in-
terfaces) to a component (module). TheAspectJproject
[asp02] writes:

”Consider whatAspect Oriented Programming
(AOP)really does: It makes the modules in a pro-
gram correspond to modules in the design. In any
given design, some modules are optional, and some
are not.”

They distinguish betweenDevelopmentandProduc-
tion aspects (Figure 4). Production aspects would be de-
livered with the finished product, while development as-
pects would be used during the development process. Of-
ten, production aspects are also used during development.

Fig. 4. Possible Systematics of Concerns and Aspects.

Common development aspects are used for logging,
tracing, debugging, profiling or testing. Common produc-
tion aspects are used for performance monitoring and di-

agnostic systems, for display updating or notifications in
general, for security, context passing and error handling.

2 Basics

2.1 A Component Lifecycle

As latest research shows, it is highly desirable for nearly
all components, even for simple objects, to implement
interfaces (concerns) (Figure 5) whose methods can be
called according to a given order (contract). Each inter-
face represents a narrow view of the component or ob-
ject being controlled. The order of method calls is what is
known asComponent Lifecycle(Figure 6).

Fig. 5. Lifecycle Interfaces/Concerns [jak02].

Fig. 6. A Component Lifecycle [jak02].

An outside, active entity is responsible for calling the
component lifecycle methods in the right order. Such an



entity orComponent Containerimplements theCompos-
able interface and such controls and uses components.
Avalon [jak02]: ”It is up to each container to indicate which
lifecycle methods it will honor. This should be clearly
documented together with the description of the container.”

2.2 The HMVC Design Pattern

It is - or, at least, should be - a common standard to use
aModel-View-Controller (MVC)separation for theAppli-
cation(sometimes calledPresentation) Layerof a system.
The advantages are at hand: A clear encapsulation of code
makes it modular and easily exchangeable. Unnecessary
dependencies are avoided and the system layers get de-
coupled.

Such flexibility allows for the introduction of change-
able system parts, for theView as well as for theModel.
The view, for example, might be switchable between a
web frontend based onJava Server Pages (JSP)and a
standaloneGraphical User Interface (GUI)based onSwing.
The data sources of a model, on the other hand, might be
switchable between File, DB, CORBA/SOAP/RMI, which
together comes close to a complete persistence layer.

Fig. 7. MVC Layers [JC00].

The MVC [ea02] was extended by [JC00] to theHier-
archical MVC (HMVC)pattern [Figure 7]. The new idea
of HMVC is to have controllers coordinating the process
flow while organizing the communication between view
and model. A second core idea is to allow controllers to
have children. In such a manner, the hierarchy of con-
trollers (MVC Triads) represents the backbone of a system
whose startable root controller is called anApplication.

Child controllers (Figure 8) should be introduced for
Frames/Dialogs, Panelsor smaller GUI components, when
the controlling code gets too large. For example, aTreeor
TableGUI component may become quite complex and re-
quire an own controller. However, it is not a must to create
many child controllers. GUI components/panels/dialogs
etc. which have no very own controller, will simply be
controlled by the next higher parent controller.

Fig. 8. HMVC Client Tier Instance Diagram [JC00].

3 An Extended Component Lifecycle

Not all components will always need to have a Graphical
User Interface (GUI), as a command line, for example, is
often enough to control the component. Similarly, not all
components are based on a specific data model (persis-
tence) as some components just process direct input with-
out any data storage.

On this point, the question arises, on how to design an
application component such that it has an option, but is
not forced to use the complete MVC architecture?

The answer is quite obvious: Let us considerViewand
Model to be concerns of the component! The concerns
may be calledShowableandLoadable.

As described before, a component runs through sev-
eral states of its lifecycle which is controlled by an out-
side object, called theComponent Container. Depending
on the state of several environment variables at runtime,
the container may or may not call certain lifecycle meth-
ods of the component. A GUI-capable component, for ex-
ample, may have the following lifecycle:

configure(c);
initialize();
show(v);
hide(v);
finalize();
deconfigure(c);

Fig. 9. Lifecycle of a GUI capable Component.

The source code of [Figure 9] would belong to the
component container. Comparing with the previous ex-
ample in [Figure 6], it can be seen that in [Figure 9], an
additional methodshowhas been inserted.

Just like theconfiguremethod gets a configuration ob-
ject c as parameter, theshowmethod gets a view objectv



handed over, which is to be displayed. Such parameter ob-
jects could be created by the container:

Component c = new ComponentImpl();
View v = new ViewImpl();
c.show(v);

However, most often it is more suitable to let the com-
ponent create these parameter objects as they logically be-
long together:

Component c = new ComponentImpl();
View v = c.createView();
c.show(v);

This solution has yet another advantage: A view object
can be treated as component itself which means lifecycle
methods will have to be called, e.g.:

View v = new ViewImpl();
v.configure();
v.initialize();

All this is much better encapsulated by acreateView
method in the GUI-capable component itself, than having
the container struggling with it. If the component shall be
based on a specific data model, the corresponding meth-
ods of theLoadableconcern have to be added to the life-
cycle as well:

Component c = new ComponentImpl();
Model m = c.createModel();
View v = c.createView();
c.load(m);
c.show(v);

The example becomes complete by inserting the code
that checks the component for available conerns:

Component c = new ComponentImpl();
if (c != null) {

if (c instanceof Loadable) {
Model m = c.createModel();
c.load(m);

}
if (c instanceof Showable) {

View v = c.createView();
c.show(v);

}
} else {

throw new NullPointerException("");
}

Besides the fact that these lifecycle methods can be
called or not, there’s another advantage: The container
can determine any suitable parameter to hand over to the
component. For example, there may be another view that
could be displayed by the component’sshowmethod or
another data model that might get loaded byload.

4 The ResMedLib Framework

To verify the proposed design, it has been applied and im-
plemented within theRes Medicinaeproject [res04]. That
is based on theResMedLib Frameworkwhich aims to pro-
vide a modular and highly flexible structure to easily im-
plement new components.

Two GUI-capable components have been implemented
so far: TheResMedicinaeapplication offering a main win-
dow to host sub components (modules) and theRecord
application meant to become a fully functionalElectronic
Health Record (EHR). Both modules use a lifecycle simi-
lar to the example given above (Figure 9).

The showmethod is implemented by a parent class
AbstractComponent[Figure 10] of the component and can
be overridden, of course. It delegates the task of display-
ing the view to aDisplayManagerwhich can use Window,
Dialog, Frame, InternalFrame or TabPage as possible dis-
play. These displays are switchable at runtime. All this is
done by factories, the details of which one can study in
the code.

Fig. 10. ResMedLib class AbstractComponent in UML Class
Diagram.

Due to the consistent use of the HMVC design pattern,
all application controllers can be cascaded (Figure 11).

Fig. 11.Res Medicinae containing cascaded Sub Components.



The Res Medicinaeproject is Free Software/ Open
Source Software (OSS), licensed under theGNU GPL, i.e.
the source code is freely available and extensible, as well
as all documentation and other resources are - as long as
derived works are free as well. Contributions and support-
ers are always welcome to the project :-)

5 Summary and Future

This article proposes the split-up of view and model of
the well-known MVC design pattern into single concerns.
These two, resulting concerns were integrated into a com-
mon component lifecycle of two modules in theRes Medicinae
project. They have proven to work well and to be highly
flexible due to their clear separation.

Using this advanced architecture, developers are now
able to create general components which offer but do not
force the use of a view (GUI) and a model (persistent
data storage). This modular structure allows components
to be used in most diverse environments by simply alter-
ing some of their lifecycle calls.

It seems that the use of an aspect-oriented language
extension such as [asp02] can be avoided by sticking to
well-defined concerns/interfaces of a component, just hand-
ing over necessary parameters. However, there’s still a lot
to figure out in this area. Other useful concerns will have
to be identified. Existing systems are recommended to be
refactored and slowly move to CBD/COP with lifecycles,
to achieve higher modularity and flexibility.

6 Acknowledgements

My special thanks go to all these brave Enthusiasts of the
Open Source Community who have provided me with a
great amount of knowledge through a comprising code
base to build on. I especially would like to mention the
contributors ofRes Medicinae[res04], the developers of
Scope[sco02], ofApache-Jakarta-Avalon[jak02] and all
the other OSS projects.

7 About the Author

Christian Heller has studied Electrotechnics/Biomedical
Informatics at the Technical University of Ilmenau. He
has worked at several small to large-sized companies, in-
cluding OWiS (OTW UML tool), Intershop (e-commerce)
and a big German insurance company. Besides, he is the
founder of the Java-based ResMedicinae project - aiming
to implement a Medical Information System - and active
developer of the Open Source Community. In 2001, he re-
turned to his former University where he plans to earn a
doctorate.

References

[asp02] AspectJ Aspect-Oriented Java Extension.
http://aspectj.org, 2002.

[blu] Java Blueprints.
[Bro00] BROWN, ALAN W.: Large-Scale, Component-Based

Development. Object and Component Technology
Series. Prentice Hall PTR, London, Sydney, 2000.
http://www.phptr.com.

[ea02] AL ., MARTIN FOWLER ET: Patterns of Enterprise Ap-
plication Architecture (Information Systems Architec-
ture). Addison-Wesley, Boston, Muenchen, 2001-2002.
http://www.aw.com.

[jak02] Apache Jakarta Avalon Framework, Web Server and
Applications. http://jakarta.apache.org, 2002.

[JC00] JASON CAI , RANJIT KAPILA , GAURAV PAL : HMVC:
The layered pattern for developing strong client tiers.
July 2000.

[res04] Res Medicinae – Medical Information System.
http://www.resmedicinae.org, 1999-2004.

[sco02] Scope HMVC Java Framework.
http://scope.sourceforge.net/, 2001-2002.


